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Long Memory

Granger (1966) addressed the shape of the spectrum for
economic variables. He found that their spectrum shows a
pole at the origin.

This implies long lasting correlations in the form of an
hyperbolic decay instead of the standard geometric one.

Long memory has since been detected in many time series
in Economics, Finance, and other disciplines: GDP,
inflation, volatility series, and river flows, to name a few.

Its presence has implications for estimation and
forecasting.



Long Memory

Autocorrelation Function.



Long Memory

The dissertation contributes to three branches of analysis:

First chapter, coauthored with Niels Haldrup, deals with
theoretical reasonings behind the presence of long
memory. In particular, cross-sectional aggregation of
heterogeneous micro units leading to long memory.

The second chapter analyzes the forecasting performance
of ARFIMA models when dealing with long memory
governed by processes other than ARFIMA processes.

The third chapter, coauthored with Daniela Osterrieder and
Daniel Ventosa-Santaulària, assesses estimation of
unbalanced regressions with long memory.
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Cross-Sectional Aggregation

A common motivation behind the presence of long memory
in the time series data is cross-sectional aggregation,
Granger (1980).

Granger showed that if the series is the result of the
cross-sectional aggregation of AR(1) processes with
random coefficients of a particular type, then the
aggregated series would show long memory.



Cross-Sectional Aggregation

First Chapter:

We show that the cross-sectional aggregation result
extends to other definitions of long memory.

Granger’s result is asymptotic, we conduct a Monte Carlo
study to analyze its finite sample properties.

We study the limiting properties of a fractionally differenced
long memory process that is generated by cross-sectional
aggregation.



Definitions of Long Memory

Let xt be a stationary time series with autocovariance function
γx (k) and spectral density function fx (λ), let d ∈ (0,1/2), then:

(i) xt has long memory in the covariance sense if
γx (k) ≈ Ck2d−1 as k →∞.

(ii) xt has long memory in the spectral sense if
fx (λ) ≈ Cλ−2d as λ→ 0.

(iii) xt has long memory in the rate of the partial sum sense
if Var(

∑T
t xt ) ≈ CT 1+2d as T →∞.

(iv) xt has long memory in the self-similar sense if
m1−2d Cov(x (m)

t , x (m)
t+k ) ≈ Ck2d−1 as k ,m→∞ where

x (m)
t = 1

m (xtm−m+1 + · · ·+ xtm) with m ∈ N.

(v) xt has long memory in the distribution sense if scaled
partial sums converge to fractional Brownian motion.



Random Coefficient AR(1) model

Consider a process defined as

xi,t = αixi,t−1 + εi,t i = 1;

where εi,t is a white noise process independent of αi with
E[ε2

i,t ] = σ2
ε , ∀t ∈ Z, and α2

i ∼ B(α; p,q) with B(α; p,q) the Beta
distribution:

B(α; p,q) =
1

B(p,q)
αp−1(1− α)q−1 for α ∈ (0,1),

where p,q > 1 and B(·, ·) is the Beta function.



Random Coefficient AR(1) model

Robinson (1978) computed the second moments of this
process.
Let xi,t = αixi,t−1 + εi,t as before, then for k ∈ N:

γxi (k) := E [xi,txi,t+k ] = E
[
E [xi,txi,t+k |αi ]

]
= σ2

εE

[
αk

i

1− α2
i

]

= σ2
ε

∫ 1

0

xk/2

1− x
xp−1(1− x)q−1

B(p,q)
dx

= σ2
ε

Γ(q − 1)

B(p,q − 1)

Γ(p + k/2)

Γ(p + k/2 + q − 1)
.

Using Stirling’s approximation,
γxi (k) = CΓ(p + k/2)/Γ(p + k/2 + q − 1) ≈ Ck1−q; thus it
shows hyperbolic decaying autocorrelations.

Nonetheless, it is not an ergodic process.
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Cross-Sectional Aggregation

Granger considered N of those series defined as

xi,t = αixi,t−1 + εi,t i = 1,2, · · · ,N;

where εi,t is a white noise process independent of αi ∀i with
E[ε2

i,t ] = σ2
ε ∀i ∈ {1,2, · · · ,N}, ∀t ∈ Z, and α2

i ∼ B(α; p,q) with
B(α; p,q) the Beta distribution:

B(α; p,q) =
1

B(p,q)
αp−1(1− α)q−1 for α ∈ (0,1),

where p,q > 1 and B(·, ·) is the Beta function.

Furthermore, define the cross-sectional aggregated series
as:

xt =
1√
N

N∑
i=1

xi,t . (1)



Cross-Sectional Aggregation

Granger showed that it generates long memory in the
covariance sense, definition (i).
Let xt be the cross-sectional aggregated process as before,
then for k ∈ N:

γx (k) := E [xtxt+k ] = E

[(
1√
N

N∑
i=1

xi,t

)(
1√
N

N∑
i=1

xi,t+k

)]

=
1
N

N∑
i=1

E
[
E [xi,txi,t+k |αi ]

]
=
σ2
ε

N

N∑
i=1

E

[
αk

i

1− α2
i

]
.

Now, as N →∞,

1
N

N∑
i=1

αk
i

1− α2
i
≈ E

[
αk

i

1− α2
i

]
.

Considering the cross-sectional aggregated process
achieves ergodicity.



Cross-Sectional Aggregation



Cross-Sectional Aggregation

We extend Granger’s results to definitions (ii) through (v).

Theorem
Let xt be defined as in (1) then, as N →∞, xt has long memory
with parameter d = 1− q/2 in the sense of definitions (i)
through (iv). Furthermore, if εi,t is an i .i .d . process, then xt has
long memory in the sense of definition (v).
Proof: In the dissertation.
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Finite Sample Simulation

Granger’s result is asymptotic. We now perform a Monte
Carlo simulation to examine its finite sample properties.

We generate series under different settings with focus on
three dimensions:

The distribution of the autocorrelation coefficient near one
in the context of the implied long memory d = 1− q/2.

The cross-sectional dimension.

The sample size.

For comparison we also simulate an FI(d) processes using
the exact algorithm suggested by Jensen and Nielsen
(2014).



Finite Sample Simulation

Table: Mean and standard deviation in parentheses of the estimated
long memory parameter. T = N = 10,000; R = 1,000.

Theo. Cross-sectional aggregated FI(d)

d GPH LW MLE GPH LW MLE
0.45 0.493 0.490 0.475 0.454 0.450 0.449

( 0.072 ) ( 0.060 ) ( 0.035 ) ( 0.071 ) ( 0.058 ) ( 0.007 )
0.35 0.393 0.393 0.420 0.347 0.349 0.349

( 0.071 ) ( 0.058 ) ( 0.069 ) ( 0.072 ) ( 0.057 ) ( 0.008 )
0.25 0.320 0.320 0.362 0.252 0.250 0.248

( 0.073 ) ( 0.058 ) ( 0.072 ) ( 0.070 ) ( 0.052 ) ( 0.008 )
0.15 0.262 0.259 0.294 0.149 0.141 0.148

( 0.074 ) ( 0.063 ) ( 0.087 ) ( 0.074 ) ( 0.059 ) ( 0.008 )

Note. The estimators considered are Geweke and Porter-Hudak (1983),
GPH; the local Whittle estimator of Robinson (1995) and Kunsch (1986), LW ;
and the Maximum Likelihood Estimator of Sowell (1992), MLE ; respectively.



Finite Sample Simulation

Box-plots of d̂GPH , d = 0.45, T = R = 10,000,
N ∈ {50,100,250,500,1000,2500,5000,10000}.



Finite Sample Simulation

Heat-maps of (d̂GPH − d), d = 0.45, R = 1,000,
T ,N ∈ {50,100,250,500,750,1000,2500,5000,7500,10000}.



Finite Sample Simulation

For small cross-sectional dimension and large sample size,
the median is below the theoretical value in all cases.

For smaller sample sizes, the memory appears to be
exaggerated.

This suggests that if we use aggregation to simulate long
memory we need to increase the cross-sectional
dimension as well as the sample size.

In summary, it shows that the aggregation scheme to
generate long memory is not as precise as fractional
differencing, particularly for small degrees of memory,
while being more computationally demanding.
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Aggregation and ARFIMA processes

We are interested in assessing if fractionally differencing a
cross-sectional aggregated process removes the long memory.

Let yt = (1− L)dxt and note that:

yt = (1− L)d 1√
N

N∑
i=1

xi,t =
1√
N

N∑
i=1

(1− L)dxi,t .

In the next Theorem we obtain its autocorrelation function.



Aggregation and ARFIMA processes

Theorem
Let yt = (1− L)dxt where xt is defined as in (1) and
γy (k) = E [ytyt−k ] ∀k ∈ N then, as N →∞,

γy (k) =
γ∗(k)

B(p,q)

[
B(p,q − 1) (F1(k)− 1) + B(p +

1
2
,q − 1)F2(k)

]
,

where F1(k) and F2(k) are generalized hypergeometric
functions, γ∗(k) is the autocorrelation function of an I(−d)
process, and B(·, ·) is the Beta function.
Proof: In the dissertation

γy (k) = E [ytyt+k ] =
1
N

E [E [(1− L)dxi,t (1− L)dxi,t+k |αi ]],

where we substitute the autocovariance of an
ARFIMA(1,−d ,0) obtained by Sowell.



Aggregation and ARFIMA processes

Corollary
As k →∞, γy (k) ≈ τ(k)k−1−2d , where τ(k) is a slowly-varying
function in the sense that, for c > 0, limk→∞ τ(ck)/τ(k) = 1.
Moreover, the autocorrelations are absolutely summable, that
is,
∑∞

i=0 |ρy (k)| =
∑∞

i=0 |γy (k)/γy (0)| <∞.
Proof: In the dissertation

In particular, it has hyperbolic decaying autocorrelations;
yet, it satisfies Davidson’s definition of an I(0) process.



Aggregation and ARFIMA processes

Autocovariance function for the fractionally differenced
cross-sectional aggregated series and fitted short memory
models.

Note: Lags were selected using the Bayesian Information Criteria given the
results of Beran(1998).



Aggregation and ARFIMA processes

Taking a fractional difference with the true long memory
parameter helps in controlling the long memory behavior.

Nonetheless, caution must be taken when using
parametric estimation methods since the resulting process
after fractional differencing is not an ARMA process.
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Forecasting Long Memory

As shown previously, long memory may not necessarily
come from fractional differencing.

Given the popularity of the ARFIMA model, we may still be
interested in evaluating its forecasting performance.



Forecasting Long Memory

Chapter 2:
Evaluate the forecasting performance of ARFIMA models
on long memory generated by sources other than the
ARFIMA.

We consider the cross-sectional aggregated process and
the error duration model as sources of long memory.

We compute the Root Mean Square Error (RMSE) for each
model and determine the Model Confidence Set (MCS).

We consider forecasts horizons h = 5,10,30,50,100,300.



Forecasting Long Memory

Table: Competing Models

FI(d) HAR(3) AR(22) HAR(4) AR(50) I(1)

Following Ray (1993), we include high-order AR
processes.
The HAR(3) model of Corsi(2009) is a constrained AR(22)
given by

xt = a0 + a1x (f )
t−1 + a2x (w)

t−1 + a3x (m)
t−1 + εt ,

where x (f )
t−1 = xt−1, x (w)

t−1 = 1
5
∑5

i=1 xt−i and,

x (m)
t−1 = 1

22
∑22

i=1 xt−i .
Analogously, define the HAR(4), a constrained AR(50), as

xt = a0 + a1x (f )
t−1 + a2x (w)

t−1 + a3x (m)
t−1 + a4x (b)

t−1 + εt ,

where x (b)
t−1 = 1

50
∑50

i=1 xt−i .



Forecasting Long Memory

Percentage number of times the model is contained in the
MCS.



Forecasting Long Memory

The figure shows that FI(d) models are well suited for long
horizon forecasts of long memory generated by
cross-sectional aggregation.

The results for the HAR(3) and AR(22), and HAR(4) and
AR(50) models point to a bias-variance trade-off.

HAR models are a compromise between the rigid FI(d)
and flexible high-order AR models. They incorporate
high-order autoregressive specifications while greatly
restricting the number of parameters to be estimated.

This arrangement provides better long horizon forecasts
than pure AR specifications.
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Conclusions

We show that the cross-sectional aggregation result
extends to other definitions of long memory.

In finite samples, cross-sectional aggregation is not as
precise as fractional differencing, while being more
computationally demanding.

We study the limiting properties of a fractionally differenced
long memory process that is generated by cross-sectional
aggregation.

We find that ARFIMA models are well suited for long
horizon forecasts of long memory generated by processes
other than the ARFIMA.
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