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Preface

This is a Quarto book to learn Econometrics by programming.

The core idea is that the methods developed in Econometrics are best understood by writing code to implement them. This book is written in the style of literate programming, which means that the code and the text are interwoven. This is a powerful way to learn, because it allows you to see the code and the explanation of the code side by side.

The book is based on lectures that the authors have given at different universities and is designed to be used as a textbook for a course in Econometrics. The book is also designed to be used as a reference for practitioners who want to learn how to implement the methods of Econometrics in code.




1 Introduction

This is a book to learn Econometrics by programming. The core idea is that the methods developed in Econometrics are best understood by writing code to implement them. This book is written in the style of literate programming, which means that the code and the text are interwoven. This is a powerful way to learn, because it allows you to see the code and the explanation of the code side by side. See Knuth (1984) for additional discussion of literate programming.


1.1 Why Julia?

The language of this book is Julia. Julia is a high-level, high-performance programming language for technical computing. It is designed to be easy to learn and use, and it is designed to be fast. Julia is a great language for learning Econometrics, because it is easy to write and read, and it is fast enough to handle the large datasets that are common in Econometrics.

In contrast to languages like R and Python, Julia handle of matrices and vectors is more natural, which makes it easier to write code that closely resembles the mathematical notation used in Econometrics. Moreover, Julia use of Unicode characters makes it easy to write mathematical notation in code that closely resembles the notation used in the theory. This makes it easier to connect the theory to the code.

The following, while looking almost copied verbatim from an Econometrics theoretical derivation, is a valid line of code in Julia.

β = (X'X)^(-1)*(X'Y)


Julia interprets the transpose operator ' as the mathematical transpose, and the Greek letter β can be typed directly using Unicode. This means you can write code that looks almost identical to the mathematical formulas found in textbooks.



1.2 Data

Sources of data for the exercises in the book are included in the Ecdat package.



1.3 Quarto

The book is written using Quarto, an open-source scientific and technical publishing system. Quarto allows us to write code and text side by side, and it allows you to run the code and see the output in the book. This makes it easy to learn by doing.





2 Installation and Getting Started with Julia


2.1 Installation

Julia can be installed from its website. The installation process is straightforward and the website provides detailed instructions for all operating systems. Here we provide a brief overview of the installation process as of September 2024 that relies on the Julia version manager Juliaup.


2.1.1 Windows

Install the latest Julia version from the Microsoft Store by running this in the command prompt:

> winget install julia -s msstore




2.1.2 MacOS and Linux

Install the latest Julia version by running this in your terminal:

$ curl -fsSL https://install.julialang.org | sh




2.1.3 Juliaup

Once installed julia will be available via the command line interface.

The command juliaup is also installed, which will automatically install Julia and help keep it up to date. To install different Julia versions see juliaup --help.




2.2 Getting Started

To start Julia, simply type julia in the command line. This will open the Julia REPL (Read-Eval-Print Loop), which is a command line interface for Julia. Here you can type Julia code and see the results immediately.

julia> 1 + 1
2


To exit the REPL, type exit().



2.3 Julia Packages


2.3.1 Package Manager

Julia has a ever expanding ecosystem of packages that can be installed using the built-in package manager. To install a package, type ] in the Julia REPL to enter the package manager mode, and then type add followed by the package name.

pkg> add Plots


Alternatively, you can install a package using the Pkg module.

julia> using Pkg
julia> Pkg.add("Plots")




2.3.2 Using Packages

To use the package, type using followed by the package name.

julia> using Plots


This will load the package and make its functions available in the current session.




2.4 Project Environment


2.4.1 Creating a Project

Julia has a built-in project environment that allows you to manage the dependencies of your project. To create a new project, type ] in the Julia REPL to enter the package manager mode, and then type generate followed by the project name.

pkg> generate MyProject


This will create a new project folder with a Project.toml file that lists the dependencies of the project.



2.4.2 Activating a Project

To activate the project, type activate followed by the project name.

pkg> activate MyProject


This will activate the project environment, and any packages installed will be installed in the project environment.



2.4.3 Reproducing the Project Environment

To reproduce the project environment, you can use the instantiate command.

pkg> Pkg.instantiate()


This will install the packages listed in the Project.toml file in the project environment. This is useful for reproducibility, as it allows you to install the exact versions of the packages used in the project. Hence, when you share the Project.toml file with others, they can install the exact same versions of the packages used in the project.

We recommend using the Project.toml provided in the book’s repository to create the same project environment as the one used for the code in this book.




2.5 Integrated Development Environment (IDE)

We recommend using VSCode with the Julia extension for development. The Julia extension provides a rich set of features, including syntax highlighting, code completion, and debugging.



2.6 Resources


	Julia Documentation

	Julia Discourse







3 Ordinary Least Squares Assumptions


3.1 Introduction

This chapter discusses the assumptions needed for the Ordinary Least Squares (OLS) estimator in relation to its properties. We discuss each assumption in detail, providing intuition and examples. Each assumptions is presented in the order that it is needed to understand the OLS estimator. The chapter finishes with a summary of all the assumptions and the Gauss-Markov theorem, proving that OLS is the Best Linear Unbiased Estimator (BLUE).



3.2 Linear model

We are interested in assessing the effect that a set of explanatory variables, typically denoted by XX, has on the dependent variable, denoted by YY. For this, we assume that there is a linear relationship between them.





Assumption: Correct specification




The model is correctly specified if the true model is linear in the parameters and it is given by Y=Xβ+U,(3.1)
Y = X\beta + U,
 \qquad(3.1)

where β\beta is a vector of parameters that we want to estimate, and UU is the error term. The error term captures the effect of all other factors that affect YY but cannot be explained by XX.









Explanatory variables are also called regressors or independent variables. The dependent variable is also called the regressand or response variable. The term regression comes from the seminal work of Francis Galton on the relationship between parents’ and children’s heights (Galton 1886). He observed that tall parents tend to have children not as tall as themselves, and short parents tend to have children not as short as themselves. He called this phenomenon regression to the mean.

Equation 3.1 is a linear model in the sense that it is linear in the parameters β\beta. No parameter is raised to a power other than one, nor is it multiplied by another parameter, nor any other nonlinear transformation is applied to it. However, the model may not be linear in the variables. The matrix XX may contain nonlinear transformations of the explanatory variables.

A classical example of a nonlinear model in the explanatory variables is the quadratic model for the relationship between earnings and education. One formulation of this model is:

earnings=β0+β1education+β2education2+U.(3.2)
earnings = \beta_0 + \beta_1 education + \beta_2 education^2 + U.
 \qquad(3.2)

In Equation 3.2, the dependent variable is earningsearnings, and the independent variable is educationeducation. The model assumes that earningsearnings depend on educationeducation in a nonlinear way, where education2education^2 is a nonlinear transformation meant to capture the diminishing returns to educationeducation.

That is, the marginal effect of educationeducation on earningsearnings decreases as educationeducation increases. While one extra year of educationeducation has a positive effect on earningsearnings for everyone, the effect is larger for someone with less educationeducation than for someone with more educationeducation. This can be seen by computing the marginal effect of educationeducation on earningsearnings:

∂earnings∂education=β1+2β2education,
\frac{\partial earnings}{\partial education} = \beta_1 + 2\beta_2 education,


where β2\beta_2 is typically found to be negative, capturing the diminishing returns to education.

Note however that Equation 3.2 is linear in the parameters β0\beta_0, β1\beta_1, and β2\beta_2. Hence, it can be estimated using OLS.



3.3 Estimation

The OLS estimator is based on minimizing the sum of squared residuals, which are the differences between the observed values of the dependent variable and the values predicted by the model.

From Equation 3.1, we can write the error term as:

U=Y−Xβ,(3.3)
U = Y - X\beta,
 \qquad(3.3)

which depends on the true unknown parameter β\beta.

We cannot compute the error term, as we do not know the true value of β\beta. However, we can compute the residuals, which are the differences between the observed values of YY and the values predicted by the model using an estimate of β\beta, denoted by β̂\hat{\beta}. That is, the residuals are given by:

Û=Y−Xβ̂.(3.4)
\hat{U} = Y - X\hat{\beta}.
 \qquad(3.4)

This last point is important, so we highlight it in a callout.









Distinction between errors and residuals




The error term UU is the difference between the observed values of YY and the values predicted by the model using the true parameter β\beta. The residuals Û\hat{U} are the difference between the observed values of YY and the values predicted by the model using an estimate of β\beta, denoted by β̂\hat{\beta}.

The residuals are observable, while the error term is not. This has important implications for the properties of the OLS estimator, as we will see later.









The residual sum of squares (RSSRSS) is given by:

RSS(β̂)=Û′Û=(Y−Xβ̂)′(Y−Xβ̂).(3.5)
RSS(\hat{\beta}) = \hat{U}'\hat{U} = (Y - X\hat{\beta})'(Y - X\hat{\beta}).
 \qquad(3.5)

The OLS estimator for β\beta is the one that minimizes RSS(β)RSS(\beta).

To minimize RSS(β)RSS(\beta), we take its derivative with respect to β\beta and set it equal to zero:

∂RSS(β)∂β=−2X′Y+2X′Xβ=0.(3.6)
\frac{\partial RSS(\beta)}{\partial \beta} = -2X'Y + 2X'X\beta = 0.
 \qquad(3.6)

Solving for β\beta gives us the OLS estimator:

β̂=(X′X)−1X′Y.(3.7)
\hat{\beta} = (X'X)^{-1}X'Y.
 \qquad(3.7)

Above, we needed the matrix X′XX'X to be invertible. This is guaranteed in the case that the regressors are linearly independent. This is another of the assumptions that underlie the OLS estimator.





Assumption: Linear independence




Linear dependence means that the matrix of regressors is full rank. No regressor is a linear combination of the others.









Furthermore, we note that it is indeed a minimum by computing the second derivative:

∂2RSS(β)∂β∂β′=2X′X.(3.8)
\frac{\partial^2 RSS(\beta)}{\partial \beta \partial \beta'} = 2X'X.
 \qquad(3.8)

So that OLS is a minimum if X′XX'X is positive definite, which is the case if the regressors are linearly independent.


3.3.1 Example: Returns to education

Consider the model in Equation 3.2, where we want to estimate the returns to education. We can write the model in matrix form as:

Y=Xβ+U,
Y = X\beta + U,
 where Y=[earnings1earnings2⋮earningsN],X=[1education1education121education2education22⋮⋮⋮1educationNeducationN2],Y = \begin{bmatrix}   earnings_1 \\
    earnings_2 \\
    \vdots \\
    earnings_N
\end{bmatrix}, \quad
X = \begin{bmatrix}   1 & education_1 & education_1^2 \\
    1 & education_2 & education_2^2 \\
    \vdots & \vdots & \vdots \\
    1 & education_N & education_N^2
\end{bmatrix},
 furthermore, β=[β0β1β2],U=[u1u2⋮uN].
\beta = \begin{bmatrix}   \beta_0 \\
    \beta_1 \\
    \beta_2
\end{bmatrix}, \quad
U = \begin{bmatrix}   u_1 \\
    u_2 \\
    \vdots \\
    u_N
\end{bmatrix}.





3.4 Bias

To show that the OLS estimator is unbiased, we need to prove that the expected value of the estimator is equal to the true value of the parameter:

E[β̂]=β.(3.9)
E[\hat{\beta}] = \beta.
 \qquad(3.9)

Replacing the expression for β̂\hat{\beta} (Equation 3.7), we have:

E[β̂]=E[(X′X)−1X′Y]=E[(X′X)−1X′(Xβ+U)]=β+E[(X′X)−1X′U],
\begin{align*}
E[\hat{\beta}] &= E[(X'X)^{-1}X'Y] \\
&= E[(X'X)^{-1}X'(X\beta+U)] \\
&= \beta + E[(X'X)^{-1}X'U],
\end{align*}


where we have used the linearity of the expectation operator and the correct specification assumption (Equation 3.1).

Hence, to show that OLS is unbiased we require that:

E[(X′X)−1X′U]=0.(3.10)
E[(X'X)^{-1}X'U] = 0.
 \qquad(3.10)

There are two possibilities for this to hold:


	XX is nonstochastic and E[U]=0E[U]=0.

	XX is exogenous, i.e., EX[U]=0E_X[U] = 0, where EX[⋅]E_X[\cdot] denotes the conditional expectation given XX.



In the second case, we use the law of iterated expectations to show Equation 3.10.

The conditions above constitute the next assumption for the OLS estimator.





Assumption: Exogeneity




Exogeneity means that the regressors are uncorrelated with the error term. Alternatively, we could assume that the regressors are nonstochastic and the error term has mean zero.









The nonstochastic assumption may be sensible when we can control the inputs, like in an experimental setting. Nonetheless, it is often not reasonable in applied econometric work.

On the other hand, the exogeneity assumption is reasonable for cross-sectional data where each observation corresponds to an individual. Note that the assumption implies that the error term for one individual is uncorrelated with the regressors for all individuals: one person’s unobserved characteristics are unlikely to be correlated with another person’s observed characteristics.

However, as shown in , exogeneity is a strong assumption for time-series data. It imposes the restrictions that all errors are uncorrelated to all past and future values of the regressors.


3.4.0.1 Example: Unbiasedness of OLS

Figure 3.1 illustrates the unbiasedness of the OLS estimator under exogeneity. The figure shows the distribution of the OLS estimator for the slope coefficient in an autoregressive model, where the regressor is generated independently of the error term and hence is exogenous. The true value of the slope coefficient is 0.5, and the mean of the estimated coefficients is very close to this value, illustrating that the OLS estimator is unbiased for a small sample size of 100.

The code for generating the figure is available in the code snippet below.



Code
using StatsPlots, Distributions, Random
Random.seed!(123) # for reproducibility

R = 1000; # number of replications
N = 100; # sample size
β = 0.5
beta = zeros(R, 1) # vector to store the estimated coefficients

for ii in 1:R

    V = rand(Normal(0, 1), N ) # error term
    X = rand(Normal(0, 1), N) # regressor

    Y = X * β + V # regressand

    beta[ii] = (X' * X) \ (X' * Y) # OLS estimator
end

theme(:dracula)
boxplot(beta, label="Estimated regressor", orientation=:horizontal, color=4)
vline!([mean(beta)], label="Mean estimate", color=3, lw=3, legend=:topleft)
vline!([0.5], label="True value", color=1, lw=3, linestyle = :dash)
plot!(fontfamily="Computer Modern", titlefontfamily="Computer Modern", legendfontfamily="Computer Modern", tickfontfamily="Computer Modern",
legendfontsize=10, xlabelfontsize=10, ylabelfontsize=10,
xlabel="", ylabel="")










Figure 3.1: Bias of the OLS estimator under autoregressive model









3.5 Precision

The OLS precision is measured by its covariance matrix, which depend on the error term’s second moments.

Computing the variance of the OLS estimator we obtain: Var(β̂)=E[(β̂−β)(β̂−β)′]=E[(X′X)−1X′UU′X(X′X)−1],
Var(\hat{\beta}) = E[(\hat{\beta}-\beta)(\hat{\beta}-\beta)'] = E[(X'X)^{-1}X'U U'X(X'X)^{-1}],
 where we have substituted β̂\hat{\beta} (Equation 3.7) and used the correct specification assumption (Equation 3.1).

Similar to the bias case, we consider two cases: X is nonstochastic or exogenous. In both cases, we can write the variance as:

Var(β̂)=(X′X)−1X′E(UU′)X(X′X)−1.(3.11)
Var(\hat{\beta}) = (X'X)^{-1}X'E(UU')X(X'X)^{-1}.
 \qquad(3.11)

Equation 3.11 shows that the variance of the OLS estimator depends on the second moment of the error term, E(UU′)E(UU'), either conditional on the regressors or unconditionally. Without further assumptions, we cannot simplify this expression further, which has the sandwich form.

In general E(UU′)E(UU') is a n×nn\times n matrix, which can be very complex. To simplify this expression, we need to make further assumptions about the error term.





Assumption: No autocorrelation




The error terms are uncorrelated across observations.













Assumption: Homoskedasticity




The variance of the error term is constant across observations.









No autocorrelation means that E(UU′)E(UU') is a diagonal matrix. Homoskedasticity means that the diagonal elements are constant.

Under these two assumptions, we can write Var[U]=E[UU′]=σ2IVar[U]=E[UU'] = \sigma^2 I, so that Equation 3.11 can be simplified to obtain: Var(β̂)=σ2(X′X)−1.(3.12)
Var(\hat{\beta}) = \sigma^2(X'X)^{-1}.
 \qquad(3.12)

As shown below, the variance of the OLS estimator under the asssumptions above (Equation 3.12) is the smallest possible variance for a linear unbiased estimator. This is the content of the Gauss-Markov theorem.



3.6 The Gauss-Markov Theorem

This section presents the Gauss-Markov theorem, which states that the OLS estimator is the Best Linear Unbiased Estimator (BLUE) under certain assumptions.


Theorem 3.1 (Gauss-Markov) In a regression under correct specification, exogenous regressors, homoskedastic and no-autocorrelated errors, the OLS estimator is more efficient than any other linear unbiased estimator.

In other words, the OLS estimator is the Best Linear Unbiased Estimator (BLUE).




Proof. Let β̃\tilde{\beta} be another linear unbiased estimator. That means there exists a matrix AA such that β̃=AY\tilde{\beta} = A Y.

Given linearity, we can write the estimator as

β̃=AY=((X′X)−1X′+C)Y=β̂+CY,(3.13)
\tilde{\beta} = A Y = ((X'X)^{-1}X'+C)Y = \hat{\beta}+CY,
 \qquad(3.13)

where C=A−(X′X)−1X′C = A-(X'X)^{-1}X'.

Given that both estimators are unbiased, we have that:

β=E[β̃]=E[((X′X)−1X′+C)Y]=β+E[CY]=β+CXβ+E[CU],(3.14)
\begin{align*}
\beta &= E[\tilde{\beta}] = E[((X'X)^{-1}X'+C)Y] \\
& = \beta + E[CY] = \beta + CX\beta + E[CU],
\end{align*}
 \qquad(3.14)

where the last equality follows from the exogeneity assumption.

Equation 3.14 implies that CX=0CX = 0, given that E[CU]=0E[CU] = 0 by the zero mean of the error term and since it holds for any β\beta. Hence, CYCY has mean zero.

In turn, Equation 3.13 implies that β̃\tilde{\beta} can be written as the sum of the OLS estimator and a random variable with mean zero.

Computing the variance of β̃\tilde{\beta} we obtain:

Var[β̃]=Var[β̂+CY]=Var[β̂]+Var[CY]+2Cov[β̂,CY].(3.15)
\begin{align*}
Var[\tilde{\beta}] &= Var[\hat{\beta}+CY] \\
    &= Var[\hat{\beta}]+Var[CY]+2Cov[\hat{\beta},CY].
\end{align*}
 \qquad(3.15)

Now, the covariance term is given by:

Cov[β̂,CY]=E[(β̂−β)(CY)′]=E[(X′X)−1X′U(CXβ+CU)′]=E[(X′X)−1X′UU′C]=σ2(X′X)−1X′C′=0,
\begin{align*}
Cov[\hat{\beta},CY] &= E[(\hat{\beta}-\beta)(CY)'] = E[(X'X)^{-1}X'U(CX\beta+CU)']\\
&= E[(X'X)^{-1}X'UU'C] = \sigma^2(X'X)^{-1}X'C' = 0,
\end{align*}


where we have used that CX=0CX = 0 and that the variance-covariance matrix of the error term is given by σ2I\sigma^2I. That is, the error term is homoskedastic and uncorrelated.

Replacing this in Equation 3.15 we obtain that Var[β̃]≥Var[β̂]Var[\tilde{\beta}] \geq Var[\hat{\beta}], since we have Var[CY]≥0Var[CY] \geq 0 given the properties of variance, which concludes the proof.











Remark on Normality




Note that the Gauss-Markov theorem does not require the error term to be normally distributed. This is a common misconception, as OLS is often equated with the Maximum Likelihood Estimator (MLE) under normality. MLE requires normality, while OLS does not.











3.7 Distribution of the OLS estimator

To derive the distribution of the OLS estimator, we need to make further assumptions about the error term.

The simplest assumption is that the error term is normally distributed.


Theorem 3.2 (Normal Distribution of OLS Estimator) Under correct specification; exogenous regressors; homoskedastic, no-autocorrelated, and normally-distributed errors, the OLS estimator follows a normal distribution with mean β\beta and variance σ2(X′X)−1\sigma^2(X'X)^{-1}.

β̂∼N(β,σ2(X′X)−1).
\hat{\beta} \sim N(\beta, \sigma^2(X'X)^{-1}).





Proof. Given normality of the error term, the estimator follows a normal distribution. We only need to know the mean and variance, which we have already computed in Equation 3.9 and Equation 3.12.



Note that the assumptions in Theorem 3.2 are stronger than those in the Gauss-Markov theorem. The additional assumption of normality is needed to derive the distribution of the OLS estimator. Under these assumptions, the OLS estimator is equivalent to the Maximum Likelihood Estimator (MLE).


3.7.1 Example: Distribution of OLS estimator











3.8 OLS Assumptions (Wrap-up)

The assumptions needed for the OLS estimator to have the properties discussed above are summarized below. You should be able to explain each assumption and its role in the properties of the OLS estimator.


Definition 3.1 (OLS Assumptions)  


	Correct specification

	Linear independence

	Exogeneity

	Homoskedasticity

	No autocorrelation

	Normality (for distribution of the estimator)





The assumptions in Definition 3.1 are the standard ones in econometrics. They are necessary to ensure that the OLS estimator is unbiased, efficient, and consistent.

The first three assumptions are needed for unbiasedness and consistency. The next two are needed for efficiency, and the last one is needed to derive the distribution of the estimator. The last assumption can be relaxed if we are willing to assume large sample sizes, as the Central Limit Theorem (CLT) can be used to derive the asymptotic distribution of the OLS estimator. This is discussed in the next chapter.



3.9 Exercises


	(Normality of OLS Estimator) In this exercise, you are going to conduct a Monte Carlo simulation to show graphically that the OLS estimator follows a normal distribution under all the assumptions. That is, you are going to replicate the plot in Section 3.7.1.



Hence, you will need to follow the steps below:


	Set the sample size n=100n=100.

	Then, for R=1000R=1000 repetitions, do the following:

	Generate a regressor xx from a normal distribution with mean 0 and variance 1.

	Generate an error term uu from a normal distribution with mean 0 and variance σ2\sigma^2 of your choosing.

	Generate a dependent variable yy from the following model: y=β1x+u,y = \beta_1 x + u, for β1=1\beta_1 = 1.




	Why we dont need to generate an intercept (constant term)?




	Estimate the model above and store the OLS estimator β̂1\hat{\beta}_1 in a vector of size RR.




	Plot the histogram of β̂1\hat{\beta}_1.

	Compare the histogram with the normal distribution with mean β1\beta_1 and variance σ2(X′X)−1\sigma^2(X'X)^{-1}.

	What is plim(1nX′X)−1plim (\frac{1}{n}X'X)^{-1} for this model?




	Increase the sample size and comment on the results.



Hint: You can use the function randn() to simulate both the regressor xx and the error term uu.





4 OLS Geometric Properties


4.1 Introduction

This chapter discusses some key properties of the Ordinary Least Squares (OLS) estimator. We will focus on the properties that are most relevant for understanding the behavior of the OLS estimator in practice. Furthermore, this chapter introduces one of the most important theorems in Econometrics, the Frisch-Waugh-Lovell theorem, which provides a useful way to employ OLS in practice.



4.2 Orthogonal Projections

The OLS estimator can be interpreted in terms of orthogonal projections. OLS decomposes the dependent variable YY into two components: one that is explained by the regressors XX and another that is not. We can write this decomposition as:

Y=PXY+(I−PX)Y=PXY+MXY=Xβ̂+Û,(4.1)
Y = P_XY + (I - P_X)Y = P_X Y + M_X Y = X\hat{\beta} + \hat{U},
 \qquad(4.1)

where II is the identity matrix, PXY=Xβ̂P_XY = X\hat{\beta} is the part of YY that is explained by XX, and (I−PX)Y=Û(I - P_X)Y = \hat{U} is the part of YY that is not explained by XX.

Above, the matrix PXP_X is given by: PX=X(X′X)−1X′,(4.2)
P_X = X(X'X)^{-1}X',
 \qquad(4.2)

which is called the projection matrix onto the column space of XX. The matrix PXP_X projects YY into the space spanned by the columns of XX.

Furthermore, we define the matrix MXM_X or maker of residuals as:

MX:=(I−PX),(4.3)
M_X := (I - P_X),
 \qquad(4.3)

which is a projection matrix onto the orthogonal space to the columns of XX.


4.2.1 Properties of Projection Matrices

As the descriptions above suggest, PXP_X and MXM_X are projection matrices. They are symmetric and idempotent, as the reader is asked to verify in Exercise 4.1.

Moreover, they are complementary in the sense that PXMX=0P_XM_X = 0 and PX+MX=IP_X + M_X = I. Hence, they are orthogonal projections.

Finally, note that PXX=XP_XX = X and MXX=0M_XX = 0. The last two properties are intuitive, as PXP_X projects into the space spanned by the columns of XX, while MXM_X projects into the orthogonal space to the columns of XX. We can explain XX perfectly with itself, and there is no part of XX that is orthogonal to itself.


Exercise 4.1 Show that PXP_X and MXM_X are complementary projection matrices. That is, show:


	PX=PX′P_X = P_X',

	MX=MX′M_X = M_X',

	PX2=PXP_X^2 = P_X,

	MX2=MXM_X^2 = M_X,

	PXMX=0P_XM_X = 0,

	PX+MX=IP_X + M_X = I,

	PXX=XP_XX = X, and

	MXX=0M_XX = 0.



Hint: Use the fact that (A′)−1=(A−1)′(A')^{-1} = (A^{-1})'.





4.2.2 Consequences of the Decomposition

From Equation 4.1 note that the PXYP_XY and MXYM_XY projections can be represented by a right-angled triangle, where the hypotenuse is YY, the projection of YY onto XX is PXYP_XY, and the projection of YY onto the orthogonal space to XX is MXYM_XY.

By Pythagoras’ Theorem, a direct consequence of this decomposition is that the length of the explained part is smaller or equal to the length of the dependent variable:

||PXY||2≤||Y||2.(4.4)
||P_XY||^2 \leq ||Y||^2.
 \qquad(4.4)

The inequality above is the basis for the coefficient of determination, which we will discuss later.

Moreover, by construction, given that they minimise Equation 3.5, the length of the residuals is smaller or equal to the length of the error term: ||Û||2≤||U||2.(4.5)
||\hat{U}||^2 \leq ||U||^2.
 \qquad(4.5)

This difference is further explored when finding an unbiased estimator for the variance of the error term.

A final property of the projections is that the residuals are orthogonal to the regressors:

X′Û=X′MXY=0,(4.6)
X'\hat{U} = X'M_XY = 0,
 \qquad(4.6)

where the last equality follows from the fact that X′MX=0X'M_X = 0.

The orthogonality of the residuals to the regressors is a key property of the OLS estimator and does not depend on the true error term being orthogonal to the regressors. That is, Equation 4.6 holds regardless of whether the regressors are exogenous or not.

A direct consequence of this is that if the regressors include a constant, then the residuals sum to zero, ∑t=1NÛt=0\sum_{t=1}^N \hat{U}_t = 0. Hence, the residuals are demeaned, regardless of the expected value of the error term.




4.3 The Frisch-Waugh-Lovell Theorem

The Frisch-Waugh-Lovell (FWL) theorem provides a useful way to understand the OLS estimator in the presence of multiple regressors. The theorem states that the OLS estimator of a subset of regressors can be obtained by regressing the dependent variable and the subset of regressors on the remaining regressors and then regressing the residuals of the dependent variable on the residuals of the subset of regressors. It is a powerful result that allows us to understand the OLS estimator in terms of partial correlations.


4.3.1 Orthogonal Regressors

We are interested in analyzing the effect that partitioning the regressors have on the estimators. Assume we broke up the regressors into two groups X=[X1X2]X = [X_1\ X_2] so that Y=X1β1+X2β2+U.
Y = X_1\beta_1 + X_2\beta_2 + U.


In general, the OLS estimator of β1\beta_1 depends on X2X_2. In fact, the OLS estimator of β1\beta_1 when X2X_2 is not included in the regression may be biased and inconsistent if X1X_1 and X2X_2 are correlated, see XXXX.

Nevertheless, we can show that in the special case that X1X_1 is orthogonal to X2X_2 we obtain the same OLS estimate for β1\beta_1 using the complete specification than the one using the reduced specification.


Lemma 4.1 Let X=[X1X2]X = [X_1\ X_2] be a partition of the regressors such that X1′X2=0X_1'X_2 = 0; that is, X1X_1 is orthogonal to X2X_2. Then, the OLS estimator of β1\beta_1 in the regression: Y=X1β1+X2β2+U,
Y = X_1\beta_1 + X_2\beta_2 + U,
 is identical to the OLS estimator of β1\beta_1 in the regression: Y=X1β1+V.
Y = X_1\beta_1 + V.





Proof. Writing X=[X1X2]X = [X_1 X_2] we have that, X′X=[X1′X1X1′X2X2′X1X2′X2]=[X1′X100X2′X2].
X'X = \begin{bmatrix} X_1'X_1 & X_1'X_2 \\ X_2'X_1 & X_2'X_2 \end{bmatrix} = \begin{bmatrix} X_1'X_1 & 0 \\ 0 & X_2'X_2 \end{bmatrix}.


Now, using the formula for the inverse of a block diagonal matrix we have that, (X′X)−1=[(X1′X1)−100(X2′X2)−1].
(X'X)^{-1} = \begin{bmatrix} (X_1'X_1)^{-1} & 0 \\ 0 & (X_2'X_2)^{-1} \end{bmatrix}.


So that, [β̂1β̂2]=(X′X)−1X′Y=[(X1′X1)−1X1′Y(X2′X2)−1X2′Y]=[β̂1(r)β̂2(r)],
\begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = (X'X)^{-1}X'Y = \begin{bmatrix} (X_1'X_1)^{-1}X_1'Y \\ (X_2'X_2)^{-1}X_2'Y \end{bmatrix} = \begin{bmatrix} \hat{\beta}_1^{(r)} \\ \hat{\beta}_2^{(r)} \end{bmatrix},


where β̂1(r)\hat{\beta}_1^{(r)} is the OLS estimator of β1\beta_1 in the regression Y=X1β1+VY = X_1\beta_1 + V. ▫\square




Corollary 4.1 In the same conditions as in Lemma 4.1, the OLS estimator of β2\beta_2 in the regression:

Y=X1β1+X2β2+U,
Y = X_1\beta_1 + X_2\beta_2 + U,
 is identical to the OLS estimator of β2\beta_2 in the regression:

Y=X2β2+V.
Y = X_2\beta_2 + V.






4.3.2 Partialling Out Regressors

As a consequence of Lemma 4.1, if we could somehow remove the part of X2X_2 that is correlated with X1X_1, then we could estimate β1\beta_1 without including X2X_2 in the regression. This is accomplished by partialling out X1X_1 from X2X_2 using the projection matrix M1=MX1=I−PX1M_{1} = M_{X_1} = I - P_{X_1}.

Hence, the estimator of β2\beta_2 from the regression:

Y=M1X2β2+U,
Y = M_{1}X_2\beta_2 + U,


are numerically identical to the estimator of β2\beta_2 from the complete regression.

Nonetheless, the residuals from this regression are not the same as the residuals from the full regression Y=X1β1+X2β2+UY = X_1\beta_1 + X_2\beta_2 + U. This is because the residuals in the complete regression live in the space that contains X1X_1 and X2X_2, while the residuals in the partialled-out regression live in the space that contains only X2X_2.



4.3.3 The FWL Theorem

To recover the same residuals as in the full regression, we need to partial out X1X_1 from YY as well. This gives rise to the Frisch-Waugh-Lovell theorem.


Theorem 4.1 (Frisch-Waugh-Lovell) The OLS estimates of β2\beta_2 in the regressions Y=X1β1+X2β2+U,
Y = X_1\beta_1 + X_2\beta_2 + U,
 and M1Y=M1X2β2+U,
M_{1}Y = M_{1}X_2\beta_2 + U,
 are numerically identical.

Moreover, the residuals in both regressions are numerically identical.




Proof. The estimate of β2\beta_2 in M1Y=M1X2β2+UM_{1}Y = M_{1}X_2\beta_2 + U is given by β̂2=(X2′M1X2)−1(X2′M1Y).
\hat{\beta}_2 = (X_2'M_{1}X_2)^{-1}(X_2'M_{1}Y).


On the other hand, OLS in the full regression gives: Y=PXY+MXY=X1β̂1+X2β̂2+MXY.
Y = P_X Y+M_X Y = X_1\hat{\beta}_1+X_2\hat{\beta}_2+M_X Y.


Premultiplying by X2′M1X_2' M_{1} we obtain: X2′M1Y=X2′M1X2β̂2,
X_2' M_{1}Y = X_2' M_{1}X_2\hat{\beta}_2,
 where X2′M1MX=X2′MX=0X_2'M_{1}M_{X} = X_2' M_X = 0. Solving for β̂2\hat{\beta}_2 we obtain the same estimate as before.

Note that we have used the fact that M1MX=MXM_1M_X = M_X. This follows from the fact that M1M_1 is a projection onto the orthogonal space to X1X_1, while MXM_X is a projection onto the orthogonal space to both X1X_1 and X2X_2. Hence, MXM_X projects into a smaller space than M1M_1, and applying M1M_1 after MXM_X does not change anything.

To prove the second part of the theorem, we premultiply the complete regression by M1M_1 to obtain M1Y=M1X2β̂2+MXUM_{1}Y = M_{1}X_2\hat{\beta}_2 + M_X U, where we use the fact that M1MX=MXM_{1}M_X = M_X. Hence, the residuals are MXUM_X U in both regressions, where we have already shown that the β̂2\hat{\beta}_2 estimates are the same. ▫\square





4.3.4 Applications of the FWL Theorem: Demeaning, Detrending, and Deseasonalizing

The FWL theorem has several applications in practice. We discuss three of the most used ones: demeaning, detrending, and deseasonalizing data. They are all special cases of the FWL theorem and sometimes are used without knowing it.


4.3.4.0.1 Demeaning Data

If the regression includes a constant (ι\iota a vector of ones), Y=ιβ0+Xβ1+U.
Y = \iota\beta_0 + X\beta_1 + U.


The FWL theorem shows that the estimator for β1\beta_1 is the same if we instead run the regression: MιY=MιXβ1+U.
M_{\iota}Y = M_{\iota}X\beta_1 + U.


Hence, we obtain the same estimates by demeaning YY and XX before running the regression (see Exercise 4.2) or by including a constant in the regression.


Exercise 4.2 Let ι\iota be a vector of ones and Mι=I−PιM_{\iota} = I - P_{\iota} be the maker of residuals when the regressors include only a constant.

Show that MιY=Y−Y‾M_{\iota}Y = Y - \bar{Y}, where Y‾=1N∑t=1NYt\bar{Y} = \frac{1}{N}\sum_{t=1}^N Y_t.





4.3.4.1 Detrending Data

Some variables commonly used contain time trends so that we may consider a regression like: Y=α0ι+α1t+Xβ+U,
Y = \alpha_0 \iota + \alpha_1 t + X\beta + U,
 where t′=[1,2,⋯,N]t' = [1,2,\cdots,N] is a vector of time periods to capture the time trend.

The FWL theorem shows that we obtain the same estimates if we instead run the regression using detrended data.



4.3.4.2 Deseasonalizing Data

Furthermore, some variables may show a seasonal behavior. We can model seasonality using seasonal dummy variables Y=α1s1+α2s2+α3s3+α4s4+Xβ+U,
Y = \alpha_1 s_1 + \alpha_2 s_2 + \alpha_3 s_3 + \alpha_4 s_4 + X\beta + U,
 where sis_i are the seasonal dummy variables. In the equation above, we assume quarterly data, but the same idea applies to monthly or weekly data as well, just by changing the number of seasonal dummies.

The FWL theorem tells us that we can estimate β\beta using deseasonalized data.




4.3.5 Application of the FWL Theorem: Goodness of Fit

Another common application of the FWL theorem is in the definition of the goodness of fit of a regression. Similar to the examples above, the FWL theorem is sometimes used without explicitly mentioning it.


4.3.5.1 Uncentered R2R^2

We start by defining the uncentered coefficient of determination, or plain R2R^2.

Recalling that PXYP_XY is what XX can explain from YY motivates the following definition.


Definition 4.1 ((Uncentered) R2R^2) The coefficient of determination or (uncentered) R2R^2 is defined as R2=||PXY||2||Y||2.
R^2 = \frac{||P_XY||^2}{||Y||^2}.




The (uncentered) R2R^2 has some useful properties:


	By Equation 4.4, 0≤R2≤10 \leq R^2 \leq 1. 0 means that XX explains nothing of YY, while 1 means that XX perfectly explains YY.


	It is invariant to (nonsingular) linear transformations of XX and to changes in the scale of YY (see Exercise 4.3).





Exercise 4.3 Let AA be a nonsingular matrix. Show that the (uncentered) R2R^2 is invariant to replacing XX by XAXA.

Furthermore, show that the (uncentered) R2R^2 is invariant to replacing YY by αY\alpha Y, where α≠0\alpha \neq 0.



Nonetheless, the (uncentered) R2R^2 is not invariant to translations. Consider Ỹ:=Y+αι\tilde{Y} := Y + \alpha \iota in a regression where XX includes a constant, then, PX(Y+αι)=PXY+αPXι=PXY+αι,
P_X(Y + \alpha \iota) = P_XY + \alpha P_X\iota = P_XY + \alpha \iota,
 where we use the fact that PXι=ιP_X\iota = \iota if XX includes a constant.

So that, if we replace YY by Ỹ\tilde{Y} in the definition of R2R^2 we obtain:

R2=||PXỸ||2||Ỹ||2=||PXY+αι||2||Y+αι||2,
R^2 = \frac{||P_X \tilde{Y}||^2}{||\tilde{Y}||^2} = \frac{||P_XY + \alpha \iota||^2}{||Y + \alpha\iota||^2},


which depends on α\alpha. Making α\alpha be very large (in absolute value), we can make R2R^2 as close to 1 as we want without changing the relationship between YY and XX.



4.3.5.2 Centered R2R^2

To avoid the translation problem of the (uncentered) R2R^2, we can use the FLW theorem to demean YY and XX before calculating the R2R^2 (for regressions that include a constant). The FWL theorem tells us that the estimates and residuals do not change if we demean YY and XX before running the regression.

This gives rise to the (centered) R2R^2 defined as follows.


Definition 4.2 ((Centered) R2R^2) The (centered) coefficient of determination or (centered) R2R^2 is defined as R2=||PXMιY||2||MιY||2.
R^2 = \frac{||P_XM_\iota Y||^2}{||M_\iota Y||^2}.




The centered R2R^2 has the same properties as the uncentered R2R^2, but it is also invariant to translations of YY given that any translation is removed by demeaning.









Note on R-squared




From now on, when we refer to R2R^2 without qualification, we mean the centered R2R^2.











4.3.5.3 Adjusted R2R^2

As shown below, another possible issue with the R2R^2 is that it always increases when we add more regressors to the specification, regardless of whether the new regressors are relevant or not.


Proposition 4.1 The R2R^2 is non-decreasing in the number of regressors.




Proof. See Exercise 4.4.




Exercise 4.4 You are going to show that the R2R^2 is non-decreasing in the number of regressors. Consider the regressions given by: Y=Xβ+U,
Y = X\beta + U,
 and Y=Xβ+Zγ+V.
Y = X\beta + Z\gamma + V.


Show that the R2R^2 from the second regression is greater than or equal to the R2R^2 from the first regression. That is, show that: ||P[XZ]Y||2||Y||2≥||PXY||2||Y||2.
\frac{||P_{[X\ Z]}Y||^2}{||Y||^2} \geq \frac{||P_XY||^2}{||Y||^2}.




The intuition behind this result is that adding more regressors can only increase the space spanned by the columns of XX, and hence, it can only increase the length of the projection of YY onto that space. This can be a problem when comparing models with different numbers of regressors.

Hence, another common variant of the R2R^2 is the adjusted R2R^2, which penalizes the inclusion of additional regressors. It is defined as follows.


Definition 4.3 (Adjusted R2R^2) The adjusted coefficient of determination or adjusted R2R^2 is defined as R‾2=1−(1−R2)N−1N−K,
\bar{R}^2 = 1 - (1 - R^2)\frac{N - 1}{N - K},
 where R2R^2 is the (centered) coefficient of determination, NN is the sample size, and KK is the number of regressors.



The adjusted R2R^2 can decrease when adding more regressors, and it can be negative. A negative adjusted R2R^2 indicates that the model is worse than a model that only includes a constant.

Given this last property, adjusted R2R^2 is better suited for comparing models with different numbers of regressors.





4.4 Notes on the Precision of the OLS Estimator

Next, we discuss some factors that affect the precision of the OLS estimator.

As noted earlier, the variance of the OLS estimator is given by: Var(β̂)=σ2(X′X)−1,
Var(\hat{\beta}) = \sigma^2 (X'X)^{-1},
 where σ2\sigma^2 is the variance of the error term.

It can be shown that the variance of the OLS estimator depends on three factors, described next.


Lemma 4.2 Under the standard OLS assumptions, the variance of the OLS estimator is affected by:


	The variance of the error term, σ2\sigma^2.

	The sample size, NN.

	The relationship between the regressors, XX.






Proof. 


	The dependence on the variance of the error term, σ2\sigma^2, is straightforward, as it is a multiplicative factor in Equation 3.12. The larger the variance of the error term, the larger the variance of the OLS estimator.


	The dependence on the sample size can be seen if we write, Var(β̂)=σ2(X′X)−1=(1nσ2)(1nX′X)−1,
Var(\hat{\beta}) = \sigma^2(X'X)^{-1} = \left(\frac{1}{n}\sigma^2\right)\left(\frac{1}{n}X'X\right)^{-1},
 and assuming, as before, that plimn→∞(1nX′X)−1=SXXplim_{n\to\infty} \left(\frac{1}{n}X'X\right)^{-1}=S_{XX}. Then, as nn increases, 1nσ2\frac{1}{n}\sigma^2 decreases and 1nX′X\frac{1}{n}X'X converges to SXXS_{XX}. Hence, the variance of the OLS estimator decreases.


	The dependence on the relationship between the regressors is more subtle and requires the use of the FWL theorem.




Consider the regression Y=X1β1+X2β2+U,
Y = X_1\beta_1+X_2\beta_2+U,
 where X=[X1,X2]X=[X_1,\ X_2], and X2X_2 is a column vector.

From the FWL theorem, β2̂\hat{\beta_2} can be estimated from M1Y=M1X2β2+V.M_{1}Y = M_{1}X_2\beta_2+V.

Thus, Var(β2̂)=σ2/(X2′M1X2).
Var(\hat{\beta_2}) = \sigma^2/(X_2'M_{1}X_2).


Looking at the denominator, if X1X_1 and X2X_2 are orthogonal, then the variance of the OLS estimator of β2\beta_2 is minimized since X2′M1X2X_2'M_{1}X_2 is maximized. On the other hand, if X1X_1 and X2X_2 are highly correlated, then the variance of the OLS estimator of β2\beta_2 is increased since X2′M1X2X_2'M_{1}X_2 is decreased. This is the numerical phenomenon known as multicollinearity. ▫\square




4.4.1 Example: Effect of correlation between regressors on precision



Code
using StatsPlots, Distributions, Random
Random.seed!(123)

R = 1000
N = 100

beta = zeros(R, 2)

for ii = 1:R
    U = rand(Normal(0, 1), N ) # error term

    # Uncorrelated regressors

    X₁ = rand(Normal(0, 1), N) # regressor 1
    X₂ = rand(Normal(0, 1), N) # regressor 2

    Y = X₁ + X₂ + U # regressand

    X = [X₁ X₂]

    betas = (X'*X) \ (X'*Y) # OLS estimator

    beta[ii, 1] = betas[1]

    # Correlated regressors

    X₁ = rand(Normal(0, 1), N) # regressor 1
    X₂ = 0.5 * X₁ + rand(Normal(0, 1), N) # regressor 2

    Y = X₁ + X₂ + U # regressand

    X = [X₁ X₂]

    betas = (X'*X) \ (X'*Y) # OLS estimator

    beta[ii, 2] = betas[1]

end

theme(:dracula)
histogram(beta, label=["Est. beta (Uncorrelated)" "Est. beta (Correlated)"], legend=:topleft, fillalpha = 0.25,normalize=true)
x = range(0.5, stop=1.5, length=1000)
plot!(x, pdf.(Normal(1, 1/sqrt(N)), x), label="Normal density", color="red", ls=:dash, lw=2)
plot!(fontfamily="Computer Modern", legendfontsize=16, tickfontsize=16, titlefontfamily="Computer Modern", legendfontfamily="Computer Modern", tickfontfamily="Computer Modern", ylabelfontsize=16, xlabelfontsize=16, titlefontsize=20, xlabel="", ylabel="")









The multicollinearity problem is not solved by increasing the sample size. Hence, it is important to consider the correlation structure of the regressors when designing a regression model.

To diagnose multicollinearity, it is common to look at the variance inflation factors of the regressors.


Definition 4.4 The variance inflation factor (VIF) for regressor XjX_j is defined as: VIFj=11−Rj2,
VIF_j = \frac{1}{1 - R_j^2},
 where Rj2R_j^2 is the (centered) R2R^2 obtained by regressing XjX_j on all the other regressors.



High VIFs indicate that the regressors are highly correlated and that multicollinearity may be a problem. A common rule of thumb is that a VIF above 10 indicates a multicollinearity problem, although this threshold is somewhat arbitrary and depends on the context. In particular, VIFs are not a formal statistical test for multicollinearity.

The following exercise asks the reader to show that the variance of the OLS estimator of βj\beta_j can be written in terms of the VIF.


Exercise 4.5 Show that the variance of the OLS estimator of βj\beta_j can be written as: Var(β̂j)=σ2(n−1)Var(Xj)VIFj,
Var(\hat{\beta}_j) = \frac{\sigma^2}{(n-1)Var(X_j)}VIF_j,
 where Var(Xj)Var(X_j) is the sample variance of XjX_j.



Note that the VIF for regressor XjX_j depends on all the other regressors included in the regression, X−jX_{-j}. Different sets of regressors may lead to different VIFs for the same regressor. Hence, it is important to consider the VIFs of all the regressors when diagnosing multicollinearity.




4.5 Exercises


	Exercise 4.1


	Exercise 4.2


	Exercise 4.3


	Exercise 4.4


	Exercise 4.5






4.6 Solution to Selected Exercises


Solution 4.1 (Solution to Exercise 4.3.). Note that if XX is replaced by XAXA then, PXAY=XA((XA)′XA)−1(XA)′Y=XA(A′X′XA)−1A′X′Y=XA(A)−1(X′X)−1(A′)−1A′X′Y=PXY,
\begin{align*}
P_{XA}Y &= XA((XA)'XA)^{-1}(XA)'Y \\
    &= XA(A'X'XA)^{-1}A'X'Y = XA(A)^{-1}(X'X)^{-1}(A')^{-1}A'X'Y \\
    & = P_XY,
\end{align*}
 where we use the fact that AA is invertible and that (A′)−1=(A−1)′(A')^{-1} = (A^{-1})'. Replacing this in the definition of R2R^2 shows the invariance to linear transformations of XX.

Furthermore, if YY is replaced by αY\alpha Y then, PX(αY)=αPXY,||αY||2=α2||Y||2.
P_X(\alpha Y) = \alpha P_XY, \quad ||\alpha Y||^2 = \alpha^2 ||Y||^2.


So that, R2=||PX(αY)||2||αY||2=α2||PXY||2α2||Y||2=||PXY||2||Y||2.
R^2 = \frac{||P_X(\alpha Y)||^2}{||\alpha Y||^2} = \frac{\alpha^2 ||P_XY||^2}{\alpha^2 ||Y||^2} = \frac{||P_XY||^2}{||Y||^2}.





Solution 4.2 (Solution to Exercise 4.4.). Hint: Show that the difference between the two R2R^2 can be written as Y′(P[XZ]−PX)Y/||Y||2Y' (P_{[X\ Z]} - P_X) Y / ||Y||^2 and use the properties of projection matrices to show that P[XZ]−PXP_{[X\ Z]} - P_X has a quadratic form, hence, it is non-negative.




Solution 4.3 (Solution to Exercise 4.5.). Note that 1−RXj|X−j2=1−||P−jXj||2||Xj||2=1−Xj′P−jXjXj′Xj=Xj′Xj−Xj′P−jXjXj′Xj=Xj′M−jXjXj′Xj,
\begin{align*}
1-R^2_{X_j|X_{-j}} &= 1-\frac{||P_{-j}X_j||^2}{||X_j||^2} = 1-\frac{X_j'P_{-j}X_j}{X_j'X_j} \\
&= \frac{X_j'X_j-X_j'P_{-j}X_j}{X_j'X_j} =\frac{X_j'M_{-j}X_j}{X_j'X_j},
\end{align*}
 where P−jP_{-j} is the projection matrix onto the space spanned by all the regressors except XjX_j, and M−j=I−P−jM_{-j} = I - P_{-j}. And we have used the properties of projection matrices.

Hence, Xj′M−jXj=(Xj′Xj)(1−RXj|X−j2)=(n−1)Var(Xj)(1−RXj|X−j2),X_j'M_{-j}X_j = (X_j'X_j)(1-R^2_{X_j|X_{-j}})=(n-1)Var(X_j)(1-R^2_{X_j|X_{-j}}), where we have used that Var(Xj)=1n−1Xj′XjVar(X_j)=\frac{1}{n-1}X_j'X_j.

Thus, Var(β̂j)=σ2(n−1)Var(Xj)1(1−RXj|X−j2).Var\left(\hat{\beta}_j\right)=\frac{\sigma^2}{(n-1)Var(X_j)}\frac{1}{(1-R^2_{X_j|X_{-j}})}.

Substituting the definition of VIFjVIF_j, (Definition 4.4), concludes the proof. ▫\square
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