Classic Estimator for the Hurst Effect

Functions to estimate the rescaled range (R/S) statistic and the Hurst coefficient. The estimator is based on the original work by Hurst (1951) and is included for historical reasons. Moreover, the estimator by the variance plot is also provided. The estimators are only recommended for illustration purposes.

LongMemory.ClassicEstimators.autocorrelationFunction
autocorrelation(x::Array, k::Int; flag::Bool=false)

Computes the autocorrelation function of a time series.

Arguments

  • x::Array: The time series.
  • k::Int: The lag of the autocorrelation.

Output

  • acf::Array: The autocorrelation function.

Optional arguments

  • flag::Bool: If true, the autocorrelation function is displayed.

Examples

julia> autocorrelation(randn(100), 10)
source
LongMemory.ClassicEstimators.autocorrelation_plotFunction
autocorrelation_plot(x::Array, k::Int)

Computes the autocorrelation function of a time series.

Arguments

  • x::Array: The time series.
  • k::Int: The lag of the autocorrelation.

Output

  • p1::Plots.Plot: The autocorrelation function.

Examples

julia> autocorrelation_plot(randn(100), 10)
source
LongMemory.ClassicEstimators.autocovarianceMethod
autocovariance(x::Array, k::Int)

Computes the autocovariance of a time series.

Arguments

  • x::Array: The time series.
  • k::Int: The lag of the autocovariance.

Output

  • acv::Array: The autocovariance.

Examples

julia> autocovariance(randn(100), 2)
source
LongMemory.ClassicEstimators.log_variance_estMethod
log_variance_est(x::Array; m::Int=200)

Computes the long memory estimate using the log-variance.

Arguments

  • x::Array: The time series.

Output

  • d_var::Real: The estimated long memory parameter computed as (beta+1)/2, where beta is the slope of the linear regression of the log-variance plot.

Optional arguments

  • m::Int: The number of partitions of the time series. Default is 20. A value of m ≈ length(x)/2 is recommended.

Notes

This function uses the linear regression method on the log-variance to estimate the long memory parameter.

Examples

julia> log_variance_est(randn(100,1); m = 40)
source
LongMemory.ClassicEstimators.log_variance_plotMethod
log_variance_plot(x::Array; m::Int=100, slope::Bool=false, slope2::Bool=false)

Produces the log-variance plot of a time series.

Arguments

  • x::Array: The time series.

Output

  • d_var::Real: The estimated long memory parameter computed as (beta+1)/2, where beta is the slope of the linear regression of the log of the variance plot.

Optional arguments

  • m::Int: The number of partitions of the time series. Default is 20. A value of m ≈ length(x)/2 is recommended.
  • slope::Bool: If true, the slope of the linear regression is displayed.
  • slope2::Bool: If true, the theoretical slope for a short memory process is displayed.

Notes

This function uses the linear regression method on the log of the variance plot to estimate the long memory parameter.

Examples

julia> log_variance_plot(randn(100,1); m = 40)
source
LongMemory.ClassicEstimators.rescaled_rangeMethod
rescaled_range(x::Array; k::Int = 20)

Computes the rescaled range (R/S) statistic of a time series.

Arguments

  • x::Array: The time series.

Optional arguments

  • k::Int: The number of partitions of the time series. Default is 20.

Output

  • RS::Array: The rescaled range statistic.

Examples

julia> rescaled_range(randn(100))
source
LongMemory.ClassicEstimators.rescaled_range_estMethod
rescaled_range_est(x::Array; k::Int = 20)

Estimates the long memory parameter of a time series using the rescaled range (R/S) statistic.

Arguments

  • x::Array: The time series.

Output

  • d::Real: The estimated long memory parameter.

Optional arguments

  • k::Int: The number of partitions of the time series. Default is 20.

Notes

This function uses the linear regression method on the log of the rescaled range to estimate the long memory parameter. The Hurst coefficient is related to the long memory parameter d by the formula H = d + 1/2.

Examples

julia> rescaled_range_est(randn(100))
source
LongMemory.ClassicEstimators.rescaled_range_plotMethod
rescaled_range_plot(x::Array; k::Int = 100, slope::Bool = false, slope2::Bool = false)

Produces the rescaled range plot of a time series.

Arguments

  • x::Array: The time series.

Output

  • p1::Plots.Plot: The rescaled range plot.

Optional arguments

  • k::Int: The number of partitions of the time series. Default is 100.
  • slope::Bool: If true, the slope of the linear regression is displayed.
  • slope2::Bool: If true, the theoretical slope for a short memory process is displayed.

Notes

This function uses the linear regression method on the log of the rescaled range to estimate the long memory parameter. The Hurst coefficient is related to the long memory parameter d by the formula H = d + 1/2.

Examples

julia> rescaled_range_plot(randn(300,1))
source
LongMemory.ClassicEstimators.smeanMethod
smean(x::Array)

Computes the sample mean of a time series.

Arguments

  • x::Array: The time series.

Output

  • mean::Real: The sample mean.

Examples

julia> smean(randn(100))
source
LongMemory.ClassicEstimators.sstdMethod
sstd(x::Array; k::Int=0)

Computes the sample standard deviation of a time series.

Arguments

  • x::Array: The time series.

Output

  • std::Real: The sample standard deviation.

Optional arguments

  • k::Int: The bias-correction term.

Notes

This function divides by T instead of T-1 if no bias-correction term is provided.

Examples

julia> sstd(randn(100))
source
LongMemory.ClassicEstimators.sstdkMethod
sstdk(x::Array, m::Int)

Computes the sample standard deviation of a time series using the m-th order sample mean.

Arguments

  • x::Array: The time series.
  • m::Int: The order of the sample mean.

Output

  • std::Real: The sample standard deviation.

Examples

julia> sstdk(randn(100), 20)
source

Hurst, H.E. (1951). Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers, 116, 770-799.

Documentation for LongMemory.jl.