{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "title: 'Breaching 1.5°C: Give me the odds'\n", "subtitle: 'Temperature anomalies notebook'\n", "author:\n", " - name: J. Eduardo Vera-Valdés\n", " email: eduardo@math.aau.dk\n", " url: 'https://everval.github.io'\n", " affiliations:\n", " - name: Aalborg University\n", " department: Department of Mathematical Sciences\n", " country: Denmark\n", " orcid: 0000-0002-0337-8055\n", " corresponding: true\n", " - name: Olivia Kvist\n", " email: omtk@math.aau.dk\n", " affiliations:\n", " - name: Aalborg University\n", " department: Department of Mathematical Sciences\n", " country: Denmark\n", "abstract: |\n", " This is a supplementary notebook for the paper \"Breaching 1.5°C: Give me the odds\" by J. Eduardo Vera-Valdés and Olivia Kvist. The notebook shows a plot comparing the different temperature anomalies datasets used in the paper.\n", "format:\n", " html:\n", " mainfont: Georgia, serif\n", " html-math-method: katex\n", " theme: litera\n", " code-fold: true\n", " title-block-banner: \"#eef7ee\"\n", "# typst:\n", "# mainfont: Computer Modern\n", "# fontsize: 12pt\n", "# papersize: a4\n", "execute:\n", " enabled: true\n", " cache: true\n", " freeze: auto\n", "engine: julia\n", "#jupyter: julia-1.11\n", "bibliography: library.bib\n", "---" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 0. Load Packages" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "\u001b[32m\u001b[1m Activating\u001b[22m\u001b[39m project at `~/Library/CloudStorage/OneDrive-AalborgUniversitet/Research/CLIMATE/Paris Goal/Odds-of-breaching-1.5C`\n", "WARNING: replacing module TrendEstimators.\n" ] } ], "source": [ "#| label: load-packages\n", "#| echo: false\n", "#| output: false\n", "#| warning: false\n", "#| include: false\n", "\n", "using Pkg\n", "Pkg.activate(pwd())\n", "using Plots, Dates, CSV, DataFrames, Statistics\n", "include(\"TrendEstimators.jl\")\n", "using .TrendEstimators\n", "\n", "theme(:ggplot2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Load Data\n", "\n", "### 1.1 Load HadCRUT Data" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
5×203 DataFrame
103 columns omitted
RowTimeFraction of area representedCoverage uncertainty (1 sigma)Realization 1Realization 2Realization 3Realization 4Realization 5Realization 6Realization 7Realization 8Realization 9Realization 10Realization 11Realization 12Realization 13Realization 14Realization 15Realization 16Realization 17Realization 18Realization 19Realization 20Realization 21Realization 22Realization 23Realization 24Realization 25Realization 26Realization 27Realization 28Realization 29Realization 30Realization 31Realization 32Realization 33Realization 34Realization 35Realization 36Realization 37Realization 38Realization 39Realization 40Realization 41Realization 42Realization 43Realization 44Realization 45Realization 46Realization 47Realization 48Realization 49Realization 50Realization 51Realization 52Realization 53Realization 54Realization 55Realization 56Realization 57Realization 58Realization 59Realization 60Realization 61Realization 62Realization 63Realization 64Realization 65Realization 66Realization 67Realization 68Realization 69Realization 70Realization 71Realization 72Realization 73Realization 74Realization 75Realization 76Realization 77Realization 78Realization 79Realization 80Realization 81Realization 82Realization 83Realization 84Realization 85Realization 86Realization 87Realization 88Realization 89Realization 90Realization 91Realization 92Realization 93Realization 94Realization 95Realization 96Realization 97
DateFloat64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
11850-01-010.530360.12529-0.648141-0.687369-0.659397-0.795922-0.575723-0.872706-0.697845-0.938079-0.714489-0.693846-0.801877-0.601654-0.745235-0.688707-0.51959-0.580684-0.733635-0.775802-0.685629-0.750843-0.593316-0.796245-0.681935-0.709096-0.673113-0.627142-0.87027-0.734045-0.739397-0.733723-0.722726-0.733075-0.704837-0.646199-0.63273-0.687739-0.686664-0.766938-0.660519-0.500427-0.761633-0.593218-0.673419-0.633932-0.53979-0.534376-0.730824-0.672585-0.709929-0.782612-0.587371-0.775013-0.669417-0.738468-0.65991-0.641778-0.705-0.728567-0.854561-0.622728-0.666254-0.762724-0.654979-0.698282-0.566776-0.641214-0.608169-0.721251-0.643558-0.737449-0.638663-0.610622-0.526234-0.738695-0.819199-0.678843-0.683284-0.784564-0.613478-0.755483-0.777482-0.624742-0.627155-0.62747-0.688723-0.854917-0.592061-0.583304-0.820669-0.859069-0.661617-0.548561-0.743047-0.796279-0.746007-0.975871-0.626403
21850-02-010.4715130.15873-0.198692-0.379979-0.353424-0.499135-0.307929-0.437846-0.226076-0.577648-0.405545-0.392731-0.597314-0.396609-0.332673-0.431029-0.186967-0.323219-0.320514-0.585462-0.386137-0.31327-0.374146-0.393756-0.377606-0.270782-0.281058-0.297886-0.440194-0.272709-0.375954-0.316262-0.395188-0.45457-0.310405-0.380035-0.414555-0.284795-0.391644-0.302887-0.429657-0.208564-0.397717-0.427922-0.29149-0.208944-0.232016-0.34283-0.303425-0.159931-0.409084-0.379061-0.441772-0.384035-0.168103-0.374769-0.331487-0.281074-0.473583-0.308901-0.519065-0.37427-0.373581-0.392881-0.259453-0.358303-0.189542-0.268094-0.19915-0.513153-0.427336-0.380227-0.389459-0.32174-0.139402-0.278627-0.342224-0.304565-0.209553-0.431765-0.262323-0.418606-0.363407-0.292048-0.373431-0.360892-0.476022-0.406109-0.389504-0.239712-0.329308-0.478804-0.303512-0.305987-0.337012-0.644136-0.404883-0.496024-0.366001
31850-03-010.4430690.146062-0.559715-0.58127-0.613536-0.770914-0.649228-0.674574-0.422177-0.66901-0.633439-0.52613-0.742085-0.673435-0.500491-0.750384-0.441357-0.66936-0.684599-0.871666-0.528859-0.450323-0.676369-0.747881-0.515235-0.564603-0.517356-0.65774-0.799563-0.562602-0.7321-0.708126-0.601581-0.750345-0.491204-0.521375-0.63429-0.650293-0.695271-0.567457-0.661922-0.402203-0.729825-0.630483-0.591241-0.595347-0.520872-0.534415-0.675771-0.521642-0.579516-0.71082-0.538983-0.637005-0.613244-0.527521-0.518286-0.549176-0.646482-0.474831-0.749775-0.593508-0.65672-0.616531-0.641366-0.579132-0.353847-0.593789-0.379657-0.577604-0.665159-0.552994-0.700469-0.621582-0.519006-0.692925-0.651994-0.63646-0.483905-0.629932-0.463239-0.664408-0.699684-0.507791-0.731221-0.577734-0.688031-0.647881-0.681086-0.607305-0.700216-0.774448-0.562562-0.489596-0.625427-0.771725-0.605319-0.642851-0.665689
41850-04-010.4770590.116737-0.582562-0.630568-0.667448-0.662525-0.535898-0.639695-0.530702-0.777102-0.586981-0.560966-0.728786-0.682735-0.672664-0.766407-0.453648-0.560511-0.602442-0.735504-0.63805-0.540513-0.739323-0.585814-0.718682-0.603517-0.559599-0.594016-0.883967-0.482028-0.72607-0.738021-0.665697-0.593461-0.588228-0.420146-0.570728-0.525597-0.762746-0.651996-0.67501-0.645-0.770939-0.635276-0.575136-0.474133-0.439831-0.45318-0.473134-0.518875-0.570078-0.59986-0.661941-0.67698-0.512728-0.550911-0.497807-0.615813-0.453946-0.432336-0.790955-0.860717-0.531102-0.672874-0.730638-0.601917-0.429681-0.665624-0.535866-0.594661-0.656524-0.685286-0.49377-0.605827-0.551834-0.556864-0.688364-0.615699-0.659199-0.586911-0.499775-0.698917-0.642701-0.524081-0.586376-0.729377-0.701497-0.737507-0.544223-0.426124-0.786389-0.706019-0.53647-0.61126-0.617072-0.755983-0.614728-0.72169-0.544256
51850-05-010.4872330.0959004-0.405015-0.493155-0.550864-0.544453-0.47662-0.672841-0.49744-0.602508-0.587425-0.501821-0.602731-0.661768-0.543273-0.610651-0.416928-0.468399-0.599917-0.601003-0.517457-0.532942-0.559357-0.613025-0.540389-0.424855-0.623499-0.473184-0.582298-0.488883-0.597144-0.580549-0.596275-0.515859-0.479709-0.451944-0.450419-0.513041-0.654336-0.641418-0.526376-0.440389-0.501845-0.485711-0.625926-0.433709-0.496531-0.421105-0.541942-0.478641-0.559323-0.551123-0.677664-0.617393-0.537903-0.498957-0.40096-0.499489-0.400485-0.450071-0.640857-0.553566-0.649817-0.483871-0.56162-0.587049-0.408533-0.486738-0.515691-0.4793-0.607593-0.468211-0.523822-0.490501-0.496283-0.508472-0.526525-0.486144-0.449892-0.609757-0.281833-0.624157-0.528959-0.380567-0.620688-0.520108-0.608274-0.551075-0.464028-0.444602-0.423735-0.538749-0.574072-0.397351-0.445786-0.760367-0.51173-0.664402-0.439849
" ], "text/latex": [ "\\begin{tabular}{r|ccccc}\n", "\t& Time & Fraction of area represented & Coverage uncertainty (1 sigma) & Realization 1 & \\\\\n", "\t\\hline\n", "\t& Date & Float64 & Float64 & Float64 & \\\\\n", "\t\\hline\n", "\t1 & 1850-01-01 & 0.53036 & 0.12529 & -0.648141 & $\\dots$ \\\\\n", "\t2 & 1850-02-01 & 0.471513 & 0.15873 & -0.198692 & $\\dots$ \\\\\n", "\t3 & 1850-03-01 & 0.443069 & 0.146062 & -0.559715 & $\\dots$ \\\\\n", "\t4 & 1850-04-01 & 0.477059 & 0.116737 & -0.582562 & $\\dots$ \\\\\n", "\t5 & 1850-05-01 & 0.487233 & 0.0959004 & -0.405015 & $\\dots$ \\\\\n", "\\end{tabular}\n" ], "text/plain": [ "\u001b[1m5×203 DataFrame\u001b[0m\n", "\u001b[1m Row \u001b[0m│\u001b[1m Time \u001b[0m\u001b[1m Fraction of area represented \u001b[0m\u001b[1m Coverage uncertainty (1 sigma\u001b[0m ⋯\n", " │\u001b[90m Date \u001b[0m\u001b[90m Float64 \u001b[0m\u001b[90m Float64 \u001b[0m ⋯\n", "─────┼──────────────────────────────────────────────────────────────────────────\n", " 1 │ 1850-01-01 0.53036 0.12529 ⋯\n", " 2 │ 1850-02-01 0.471513 0.15873\n", " 3 │ 1850-03-01 0.443069 0.146062\n", " 4 │ 1850-04-01 0.477059 0.116737\n", " 5 │ 1850-05-01 0.487233 0.095900 ⋯\n", "\u001b[36m 201 columns omitted\u001b[0m" ] }, "execution_count": 51, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rawtemp_hadcrut = CSV.read(\"data/HadCRUT.5.0.2.0.analysis.ensemble_series.global.monthly.csv\", DataFrame)\n", "first(rawtemp_hadcrut, 5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Saving the mean of the ensemble to be used later." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
5×2 DataFrame
RowDatesTemperature
DateFloat64
11850-01-01-0.674564
21850-02-01-0.333416
31850-03-01-0.591323
41850-04-01-0.588721
51850-05-01-0.508817
" ], "text/latex": [ "\\begin{tabular}{r|cc}\n", "\t& Dates & Temperature\\\\\n", "\t\\hline\n", "\t& Date & Float64\\\\\n", "\t\\hline\n", "\t1 & 1850-01-01 & -0.674564 \\\\\n", "\t2 & 1850-02-01 & -0.333416 \\\\\n", "\t3 & 1850-03-01 & -0.591323 \\\\\n", "\t4 & 1850-04-01 & -0.588721 \\\\\n", "\t5 & 1850-05-01 & -0.508817 \\\\\n", "\\end{tabular}\n" ], "text/plain": [ "\u001b[1m5×2 DataFrame\u001b[0m\n", "\u001b[1m Row \u001b[0m│\u001b[1m Dates \u001b[0m\u001b[1m Temperature \u001b[0m\n", " │\u001b[90m Date \u001b[0m\u001b[90m Float64 \u001b[0m\n", "─────┼─────────────────────────\n", " 1 │ 1850-01-01 -0.674564\n", " 2 │ 1850-02-01 -0.333416\n", " 3 │ 1850-03-01 -0.591323\n", " 4 │ 1850-04-01 -0.588721\n", " 5 │ 1850-05-01 -0.508817" ] }, "execution_count": 52, "metadata": {}, "output_type": "execute_result" } ], "source": [ "menstemp_hadcrut = reduce(+, eachcol(rawtemp_hadcrut[:, 4:203])) ./ ncol(rawtemp_hadcrut[:, 4:203]);\n", "temp_hadcrut = DataFrame(\"Dates\" => rawtemp_hadcrut.Time, \"Temperature\" => menstemp_hadcrut[:]);\n", "first(temp_hadcrut, 5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Baseline" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
5×2 DataFrame
RowDatesTemperature
DateFloat64
11850-01-01-0.31563
21850-02-010.0255188
31850-03-01-0.232388
41850-04-01-0.229786
51850-05-01-0.149882
" ], "text/latex": [ "\\begin{tabular}{r|cc}\n", "\t& Dates & Temperature\\\\\n", "\t\\hline\n", "\t& Date & Float64\\\\\n", "\t\\hline\n", "\t1 & 1850-01-01 & -0.31563 \\\\\n", "\t2 & 1850-02-01 & 0.0255188 \\\\\n", "\t3 & 1850-03-01 & -0.232388 \\\\\n", "\t4 & 1850-04-01 & -0.229786 \\\\\n", "\t5 & 1850-05-01 & -0.149882 \\\\\n", "\\end{tabular}\n" ], "text/plain": [ "\u001b[1m5×2 DataFrame\u001b[0m\n", "\u001b[1m Row \u001b[0m│\u001b[1m Dates \u001b[0m\u001b[1m Temperature \u001b[0m\n", " │\u001b[90m Date \u001b[0m\u001b[90m Float64 \u001b[0m\n", "─────┼─────────────────────────\n", " 1 │ 1850-01-01 -0.31563\n", " 2 │ 1850-02-01 0.0255188\n", " 3 │ 1850-03-01 -0.232388\n", " 4 │ 1850-04-01 -0.229786\n", " 5 │ 1850-05-01 -0.149882" ] }, "execution_count": 53, "metadata": {}, "output_type": "execute_result" } ], "source": [ "oldbase_hadcrut = mean(temp_hadcrut.Temperature[(temp_hadcrut.Dates.>=Date(1850, 1, 1)).&(temp_hadcrut.Dates.
5×2 DataFrame
RowDatesTemperature
DateFloat64
11880-01-01-0.2
21880-02-01-0.26
31880-03-01-0.09
41880-04-01-0.17
51880-05-01-0.1
" ], "text/latex": [ "\\begin{tabular}{r|cc}\n", "\t& Dates & Temperature\\\\\n", "\t\\hline\n", "\t& Date & Float64\\\\\n", "\t\\hline\n", "\t1 & 1880-01-01 & -0.2 \\\\\n", "\t2 & 1880-02-01 & -0.26 \\\\\n", "\t3 & 1880-03-01 & -0.09 \\\\\n", "\t4 & 1880-04-01 & -0.17 \\\\\n", "\t5 & 1880-05-01 & -0.1 \\\\\n", "\\end{tabular}\n" ], "text/plain": [ "\u001b[1m5×2 DataFrame\u001b[0m\n", "\u001b[1m Row \u001b[0m│\u001b[1m Dates \u001b[0m\u001b[1m Temperature \u001b[0m\n", " │\u001b[90m Date \u001b[0m\u001b[90m Float64 \u001b[0m\n", "─────┼─────────────────────────\n", " 1 │ 1880-01-01 -0.2\n", " 2 │ 1880-02-01 -0.26\n", " 3 │ 1880-03-01 -0.09\n", " 4 │ 1880-04-01 -0.17\n", " 5 │ 1880-05-01 -0.1" ] }, "execution_count": 54, "metadata": {}, "output_type": "execute_result" } ], "source": [ "widetemp = CSV.read(\"data/GLB.Ts+dSST.csv\", DataFrame)\n", "rawtemp_gistemp = TrendEstimators.longseries(widetemp)\n", "T = size(rawtemp_gistemp, 1);\n", "dates = collect(Date(1880, 1, 1):Month(1):(Date(1880, 1, 1)+Dates.Month(T - 1)));\n", "temp_gistemp = DataFrame(\"Dates\" => dates, \"Temperature\" => rawtemp_gistemp[:]);\n", "first(temp_gistemp, 5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Baseline" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "oldbase_gistemp = mean(temp_gistemp.Temperature[(temp_gistemp.Dates.>=Date(1850, 1, 1)).&(temp_gistemp.Dates. dates, \"Temperature\" => rawtemp_berkeley[!, 3]);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Baseline" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "oldbase_berkeley = mean(rawtemp_berkeley.Temperature[(rawtemp_berkeley.Dates.>=Date(1850, 1, 1)).&(rawtemp_berkeley.Dates. dates, \"Temperature\" => rawtemp_berkeley.Temperature .- oldbase_berkeley);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1.4 NOAA Data" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "rawtemp_noaa = CSV.read(\"data/NOAA.csv\", DataFrame)\n", "T = size(rawtemp_noaa, 1);\n", "dates = collect(Date(1850, 1, 1):Month(1):(Date(1850, 1, 1)+Dates.Month(T - 1)));\n", "temp_noaa = DataFrame(\"Dates\" => dates, \"Temperature\" => rawtemp_noaa[!, 3]);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Baseline" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
5×2 DataFrame
RowDatesTemperature
DateFloat64
12024-04-011.34532
22024-05-011.39105
32024-06-011.39492
42024-07-011.44785
52024-08-011.45617
" ], "text/latex": [ "\\begin{tabular}{r|cc}\n", "\t& Dates & Temperature\\\\\n", "\t\\hline\n", "\t& Date & Float64\\\\\n", "\t\\hline\n", "\t1 & 2024-04-01 & 1.34532 \\\\\n", "\t2 & 2024-05-01 & 1.39105 \\\\\n", "\t3 & 2024-06-01 & 1.39492 \\\\\n", "\t4 & 2024-07-01 & 1.44785 \\\\\n", "\t5 & 2024-08-01 & 1.45617 \\\\\n", "\\end{tabular}\n" ], "text/plain": [ "\u001b[1m5×2 DataFrame\u001b[0m\n", "\u001b[1m Row \u001b[0m│\u001b[1m Dates \u001b[0m\u001b[1m Temperature \u001b[0m\n", " │\u001b[90m Date \u001b[0m\u001b[90m Float64 \u001b[0m\n", "─────┼─────────────────────────\n", " 1 │ 2024-04-01 1.34532\n", " 2 │ 2024-05-01 1.39105\n", " 3 │ 2024-06-01 1.39492\n", " 4 │ 2024-07-01 1.44785\n", " 5 │ 2024-08-01 1.45617" ] }, "execution_count": 59, "metadata": {}, "output_type": "execute_result" } ], "source": [ "oldbase_noaa = mean(temp_noaa.Temperature[(temp_noaa.Dates.>=Date(1850, 1, 1)).&(temp_noaa.Dates.\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ], "text/html": [ "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ] }, "execution_count": 60, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#| label: fig-all-temp\n", "#| fig-cap: \"Temperature anomalies (°C) in the HadCRUT5 [@HadCRUT5], GISTEMP [@GISTEMPTeam2020], Berkeley Earth [@BerkeleyEarth], and NOAAGlobalTemp [@NOAA] datasets. All datasets are presented with the pre-industrial baseline period (Before 1900).\"\n", "\n", "plot(temp_hadcrut.Dates, temp_hadcrut.Temperature, label=\"HadCRUT (pre-industrial baseline)\", xlabel=\"Date (monthly)\", ylabel=\"°C\", linewidth=0.8, linestyle= :dot, xticks=(temp_hadcrut.Dates[372:240:end], Dates.format.(temp_hadcrut.Dates[372:240:end], \"Y\")), title=\"Temperature anomalies\", color=1)\n", "plot!(temp_gistemp.Dates, temp_gistemp.Temperature, label=\"GISTEMP (pre-industrial baseline)\", linewidth=0.8, linestyle= :dot, color=2)\n", "plot!(temp_berkeley.Dates, temp_berkeley.Temperature, label=\"Berkeley Earth (pre-industrial baseline)\", linewidth=0.8, linestyle= :dot, color=3, xlims=(Date(1990, 1, 1), Date(2024, 10, 1)))\n", "plot!(temp_noaa.Dates, temp_noaa.Temperature, label=\"NOAA (pre-industrial baseline)\", linewidth=0.7, linestyle= :dot, color=4, ylims=(-0.2, 1.8))\n", "plot!(fontfamily=\"Computer Modern\", legendfontsize=12, tickfontsize=12, titlefontfamily=\"Computer Modern\", legendfontfamily=\"Computer Modern\", tickfontfamily=\"Computer Modern\", ylabelfontsize=12, xlabelfontsize=12, titlefontsize=12, legend=:bottomright)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\"/Users/jeddy/Library/CloudStorage/OneDrive-AalborgUniversitet/Research/CLIMATE/Paris Goal/Odds-of-breaching-1.5C/figures/Temperature-Anomalies-All-Datasets.png\"" ] }, "execution_count": 61, "metadata": {}, "output_type": "execute_result" } ], "source": [ "savefig(\"figures/Temperature-Anomalies-All-Datasets.png\")" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "4-element Vector{Vector{Float64}}:\n", " [1.4334640716722102, 1.4743430876722106, 1.4969345246722099, 1.5985191671722112, 1.4999801771722105]\n", " [1.3774603174603173, 1.4574603174603173, 1.4174603174603173, 1.5174603174603174, 1.4474603174603173]\n", " [1.513775, 1.531775, 1.530775, 1.683775, 1.573775]\n", " [1.3453185816666666, 1.3910525816666666, 1.3949165816666667, 1.4478515816666666, 1.4561725816666666]" ] }, "execution_count": 62, "metadata": {}, "output_type": "execute_result" } ], "source": [ "\n", "[ last(temp_hadcrut.Temperature, 5), last(temp_gistemp.Temperature, 5), last(temp_berkeley.Temperature, 5), last(temp_noaa.Temperature, 5) ]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Probability paths" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "paths_hadcrut = CSV.read(\"tables/ProbabilityPathsHadCRUT5-Extensive.csv\", DataFrame);\n", "paths_gistemp = CSV.read(\"tables/ProbabilityPathsGISTEMP-Extensive.csv\", DataFrame);\n", "paths_berkeley = CSV.read(\"tables/ProbabilityPathsBerkeley-Extensive.csv\", DataFrame);\n", "paths_noaa = CSV.read(\"tables/ProbabilityPathsNOAA_breakmodel-Extensive.csv\", DataFrame);" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd3wUZfoA8Oed2TK7m01PSCEhJECooRN6UZEqooIKWM7ePc9ezrPfD/vpqWc5uyCeBRSwgHREei+BAAlpQAgp23d2Z97fH7vMLiF9Z2dSnu8ffN53dvadZ0g2z87MWwilFBBCCKGOilE7AIQQQkhNmAgRQgh1aJgIEUIIdWiYCBFCCHVomAgRQgh1aJgIEUIIdWiYCBFCCHVomAgRQgh1aJgIEUIIdWiYCBFCCHVoGrUDCAtBEGScOo4QAgCKzUVHCFFy3juGYSil7fjsRFFU7HB4djLCs5NRRz47lmV9f8Mb0A4TIaXU6XS6XC65GjSbzTzPu91uuRpsGMdxPM8r9msUGRnpcrl4nlfmcEaj0eFwKHMsAIiOjrbZbF6vV5nDKXx2MTExVqtVEARlDqfw2cXGxlosFsU+CAqfXVxcXE1NjWLJSeGzi4+Pr6ysVOxwDZ9ddHS0RtNIpsNbowghhDo0TIQIIYQ6tLDcGq2url6wYME999zT8G5ut/vnn39mGMblcmVmZg4dOjT41cOHD2/fvj0qKsput0+ZMiUyMjIcoSKEEOrgZE6EX375pc1mKyoqysvLazgRUkqfe+65mTNnDhs2zPfGgwcP3njjjb5Xt2/fvnjx4meffVar1ZaXlz/99NN///vfExIS5I0WIYQQkvnW6HXXXXfXXXeNHj260T3XrVtnt9t9WRAArr766mXLlpWUlAAApfSDDz6YOXOmVqsFgMTExCFDhnz55ZfyhooQQgiB7Imw0V6qkk2bNnXr1k2q6vX6hISEzZs3A8Dx48dPnTqVlZUlvZqWlrZt2zbFeschhBDqOFQbPnHgwIHx48cHb+E47uDBgwCwf/9+ADAYDNJLBoPBZrOdOHEiMzNT2TARQiFxF23znM4DaGicAPW6qccZqIoidVtdHOd2u2sNMKi1pw9jijcPu5GNSmlWYFTw2LZ96Tl9CKgIABaNpvYwGyqCeG4LwwJhazch8MBbAQBEEUQvsBrgYoCKwGiA+K8xGK/DnNxNo9H6qkRrELNngKmT1AZrOc7s+RSqT4DXDVSghBVjeop9rrUcXuOtOCbtRiqPgbMCpP8NVkdjuzGii/DVbt4jeEXB63bXnBU9LpFSr0gBwCsS0JsIo4VzI+28gii4bCB4AAAoJQzhjCZNTApPzzs10VZB+XOjEQhDuXjaaQAY4869LLhL94iVx4k3MESNEgKGGEZ0g9cFAAxDRJFSj5sC8UjXL4SAPgpYffB/MbhqQHADABE9QAUAAhodMBqGYXSRsYxGBwDUXkk9QcPhCGGMMaDlpA0MQwTrWco7gFKed4uCCASA1RGGBYAxD3yWOHBm7Z/d+dRJhKIoWq1WjuOCNxoMBovFAgC+f/V6ffBLAFBTU1Nna5TSkydPSh8YQojZbGbZC35rW4oQwjCMjA02jGEYhmGafm0dIoXPjhCi2LGgvZ8dADCMDDd1qNfltZzyVhWD1+21loPoobxdsFdSUaC8TfS4qNvGGGM1E+5lo7s2q+Waje9XLnuyZVFZmrOzc+8PqQ9tIay28V0FnuT9AKf2nD3we03Zscb3D5ljD3Q2g/SBZre+A7dvAQCWZTUFP4k/3nS6QrR7wOEFjwC8ABRW27//wMkLgggigHBuIKVHAArgpQAAlAIv7G/CKMRG/xftAOWN7XMa9h1o9EgAZ5uwT3UT9pFyXkVox/KPjR5cegBaZyK02+2UUp1OF7yR47gzZ84AgM1m02g0wZ9wX8q0Wq11trZv376nn346eMvTTz89cOBAuaJlGEaj0dRK2+FDCOE4TrGRtr48oeThav3cw324iIiI9np2LMuazeZGz070uARHleiocp8t9Noq+DPH3OX57vJ8T2WR4LZSb1PnUnAeXN7rxWOM1tD4ruec2vt903cOhaey0CDadDFdhMKN3qI/qaVUrMgXLWVE8GiG3KQf85BvN1K+y/vVxfYKCwC4bGGPSgRwe8EjgCCCRwS3FzwiuEvKvG/f7PSI1jPFzjMFLnedMwbgYyD5NOGiQp1E6OsFU2s2E1EUfdu1Wq0gCKIoSrnQN7tEfbMD5OTk/Pjjj1KVUmq326uqquSKFmeWkRHOLCOjmJgYi8Xie3ZORUGoKfGcLeBL94i2csFyylNxTLCcFJ1VINP3AK+1/OyJg5q4Zjye0KT0h6Idshy9YUazyU71ji1fMT/dVOt8hV8ecyYOo4l9AcC86UWvzX+RZNSAW6bfC5cXnF5we8HGg0cEXgDXucu7up1ZKc+BUVM04fdfnUTIcZxer3c6z7vXLwhCREQEAERGRvqmSTOZTL6XfH/IzGaz8qEi1MqJzprKxQ84D6+k3vB+VzNmjdLENu/WaPSU59noNO/ZgtovUJF4LMTrYlxniMdORBdLRG9UthDbBwAIIYSLNBqNTqcz8MiDCnBkOVNxiIiBL22EAc4ILAPREXbrmW3C8ZV1/9Xj/Vd/lIvT6IB3AQBEc6DXgFcEAGAY4IwA564cqAhuJwR/FyUMaLSg1QEA1Lig0g7VDqi0g50Hi8vfiFp0Wlan0xDCGrQMQyghoGUZANBqWKLjfE8rfc8IWZZhqeC/B0AYwjBao5kxxekNEee16LZQl83/WJewQmQXmtA3+NmeUFUkVB4DlyXw6JfRgCmRcZ8lHhsAsKxGELzg5QWG0+kNgX3MycCcf/vaVQXOagDK8NUguIAwhIsEwjAarS6qE/FdC7lqqPO8YxFzIjCB5KXRaLy2s9RlA8LyTpvAu4AwxBDle6wbnT2+0f9D1TrLxMXF1frubLPZOnfu7HsJAIITod1uB4CkpCTFw0SotbNsfM9xYFkoLRCNnuGiNHFdGZ2RiUggGo5oDawpDhiWaI1EyzFcJNEZY/tOdvLNu4YiGn3kmHtB4DWWo2zVQU31IbYmn63JZ22F/n4oLID0UJUvqR70sABGKN1KKvJMXS/SdZks3Rohe75gqvdc+BfLqAe9AYCwYkQa7TKW7FtQawfaexZNzfWV7f0fi3BWGIs3C26e6Ewcy4IuArQmEpmo1em9gkB1UVRrpozOqD2XG1g91RiA0lPFhUcP7Dt+cI/D2pQHXU3FaLRRSVmmhDRjTLI+IlprMBPCMBqtljNp9CZWq9ca/BcAOlMUw2p0viphDNGJrFbfUNNBlJ9rtKKigSd8Mmv47CKioxttQdFEaLPZfNd8AJCTk1NrVtby8vLLL78cAPr160cIsVgs8fHx0ktpaWk4oB6hC1FPI3/giEbHcNGEM2uiUtnIJNacpI3P0sR11cRnMVwU0TT1jynR6KApiZAKrK1Ic3avpnyrtmIn4zzFOE4Ful/Ww+sBlwPoVzOZc9e1jl0fw2UfQs8r/Ef31jONfmwWH9vVlX2jENEFenUR9WYo3Qa6CIjJopEpJKoLNcQGQuNireM/rrOZOv+YennnyQMbijf9WrxzhbP6dOPnfj7CsIaoBEN0Jy4yjjPH6UzR+ohonTFKHxGTkJoh6iK5qESdwcxomtDHB4VTWBKh2+0WBMHr9QY/1Vu3bt1rr7320EMP+UZNzJgx44knnnA4HEajEQAOHz6s0+lyc3MBIDExccyYMdu3b5cGS2zdunX69OnhCBWhti5y1F2uo2s9p/MYU7w2oZs2obs2MZtwUbr4LDa2C2OM83UiDzfGXqo//r2udKXm7F7ibd7FhyiC1f9M//y7uyd3SIlQ7Hstc2QpKdkMAKA30+hMMMZDz5nWvtcGv4NmToTMiYFqs88DAIC31xz747vjf3xfWbBHaEJnIp0pKiqle0RCekRCelRyls4YFZGQZohK5CLr/c+Pi4urrKxUcmkk1ACZE+G3335bWFh4+vTprKys5557Lj4+fsqUKT169ACAxMTEbt26Sbc309LS7rzzzrfeeuuqq66yWq1Lliz5+9//LvXMvOuuu956660VK1b06NFj7dq1GRkZU6ZMkTdUhNoHNiol+f4N1OMkzenPKRciuHQnluuPf6crWwO0kb6OXg+4HeD1AGGAS+zExKQJUd08cQMEWzWsmV97b1YH2TMCVX2kOGcpCB5oyhiJ5vO4HWX71p48sKF0z+qqooOU1vvcT8tFJPQYGpPWKyatV1RyljEu1RTbvCGMqLVRdLXGC/E8f/ToUa1Wm5mZeeEArJMnT1ZUVKSmpsbGxtb59jr5eo3ieoRNhL1GZdTisxPdNr54h33vYtFliZ7woDa5b1PeFdxrVAHBZ8e4zmjL1uqKftGVriZee2NvJS6I5W0ewREY1kYTeot/WeevCB5m4VRyajcAgCmRJg+iqcOihs6zsPHh/iDYzhQX/Lm4dM+qM0d3CJ6GPuNag7nzgEsyR16Z2v8i30DvUCh8RdiRnxE2ZT1ClRfm1el0vXv3ru/V5OTk5ORkJeNBKESCo9Jz+pBQeULk7bq0wbrkftIob9FtBVGglHpO7ufL9nhOHeBLdnurS+j5T7/4oq0pj+5R5n5mcxHewh39Wn90oabqYAO7ifo4IbaPNy7HkzhciOlFD/9MVj9dax/im9/Eh9WKc38mJ3dQUwLE+OdWZGJjoVrObinnofT04c2Hfvvvia3LGrj4AwBzp66dB1zceeClSb1HsSHnP9Q6tcMV6hFSHhUF5/4fK3Z85Tj2B1zwh5UwGmA0tL7uHucTbOXU4yD61jVYSFO5X7ftC0P+t77+8XXyxvZzdb+O73ypGNE5eDtzfHXtXY0J4kUvnreF1dLOw2ULt362M8X56xYe2/A/25mi+vYhDBvdObvL0GndJ1yHtz07AkyECIWEP33IXbDJuumDOkbLnUNFb6PdJiURQ65nWlkW1JZvifrtChA9db4qGpPdXa90Z13tjekNAFCZT2pO0Kgu0g60y1hSuAYAgDA08xI69B6amguKX/JWFR3Yt/Sdgj8XU7Hum8nmThnJfcak9B2X3HesPiJG4fCQijARItRC7sLNVb89zxdtC70pojOy5k76LsNNA2ZzWWNCb1BeuqJfamdBRuONG8AnjeG7TPXG9fePRRfczIqHyf5FQIg4/jk65C7fvnToPWJkZ7CW0m6TpTufSqo8sX/n//5Zsqvu+Vxiu/TtPn5ej1Ez2Yh4hQNDrQQmQoSajXpdNatetWx458K7oACgTeqjTcymAs+f2Co6zkrXH0RnJKwOABguSp85Sp/ST5fSX5OYzXCRikbffJ7EXMOBd31l0ZjkzL7F3WOeyAWN6xXcZM+XzLZ3wFIKAEAps/Vd4VwiBEJoz0ZmPQ4HSsXiHb8e/v2z0n1rL5xxhtVx6UOmdh83N6XvWCBE4e4kqFXBRIhQ83grjpV/OS94iRwfotFFDZ1nHHHnhbNxUsEDAk90JqVilBmfPsVy8QJD1W5nzAA+5aLg2a0AAJyV7IKpUHXefwiNzlAywgudObZz8yePni3Yc+FL0Wm9+ky+PWPETC0XceGrqAPCRIhQM3jO5Jd/fIVgDZpkhBAuayzXdaRpwGxzSnadVxWE1YZp9Jti+M6XanrM5Os8uyNLa2VBiO1Op72nUGQX8LodB37+z57Fr4ve2g81E7Nz+112X9rAS5uyIgHqODARItQMFYtuDc6CmqjU2FnvcJmjVQypZTQVu4y7X9ZU7OYzLrPlzq9j1dmmi0wLapcT+99IRz4CXFToQbZA2b51G/5zz4XToSVm5+Zc/kDnAZeoEhVq5TARItRklHrOHJVqpoFXx1w2v7X18GyUpnKfce8buhPLfROQcYc/41Mm8OlTW9wg7XoRvfif5NhvYvJgGHQbNarR5YTSM0e3H171+bGN39XqFNp1+Mx+M+6PzeinQlSojcBEiFCTERI58nbLhneAEPPwW2OmvdTm7rCZdjxv2P/vWhtJPeMi6uC2Mlv+BXlLICKJTntPGiMhDroNBt0mY5zNUlOWv/GD+8/kb6+1XW+OHX3nv9MGXqpKVKgNwUSIUDNET37GNGAWMBptYrbasTQbcVVKnT8l7i4z3GlNmsiXFq5jl9wBNcUAADVFsO4FOuO/sgfZLIKX3//T23t/ekvgz5usgDBs32l3973sPhwOiJoCEyFCzaNN6qN2CC2lNVKNiXisvpo3YYh94BOe5LGNv1H0Mmue5nd9fN4gBEGh2XfrU1V0cMP791YW7qu1Pbpzdu4N/0zu24TzQggAMBEi1HFQlrOO/9i451VRH+vKvolPvSiwKHuDyJ4vyM7zL/4ikuiox8ISZRMIvGvHNy/mrfhYFM6br6fzgEuyL/lL54ETCWHUig21RZgIEepA+JQJfMqE5r6L2E4GVRg69G5x1GOg4eSMrMmqSw6vfevm6tIjwRsN0YnDrnuh68grVQkJtXWYCBFCjaA515MD34D1JMR2F6e8RVOGqhVJ6d41a/51k9d13sJPXUdcMeLmV3UmdQZsoHYAEyFCqBE0Kl24davBU+HUJys/Wbbk5IENa9640cs7pS0RiV1yb3gpbdAktUJC7QPeSUeoraOGgx/ELBkVufYm4qoMvTlyei+zcBr78UiS/3Ngq4YjcT1UzIL5axf8/vK1wVmw27g5M+evwyyIQodXhAi1YYzzdMTaO7Qn1wMAW3PEaEy2D/tnKA2SQ98zKx4G3gYAzM/3iPcepqzKq9EKHvfGD+4v2PRDYBMhude/2Gvy7eoFhdoVTIQItVlVR8zLpjDWE9IGhre0vDVpEaWgLVT0gKqJUOBdq9/8S+meVYFNhAy77nnMgkhGmAgRapO4Y4vYrU9BUOajXKyjzz0tbpBZfg85/GPwFjryUdCquWKG9XTB76/fUFV0UNqi0RlG3/nvjOGXqxgVan8wESLkJ7osrX9pQABgrYURmx/Wlq0L3uhJHmsd9bZoSm1ho5SSo78EqhpOnPA8HXBTCGGGqmjX70tfvMZtr5a2RHfOnvDAp1Ep3VWMCrVLmAgRAsFReebza/mSXfouuQk3LmL0rXeZOv2JnyI23EOE82YUc3WbYxvxRu1lApuFEEgbAYXrAABiuwszP4O4HqFFGpKj6xdt+u+DwesoRaf1mvzUD1wkLiKP5IeJECGoWvIQX7ILANwntjj2/hAx9Aa1I6obd/jTiC1PAA2srkA1BvuQ51zZf2niHDENEGZ8QvZ8AYyG5lwHOvW+ClC6Y9EL+5aeNzN45qirRt76hkZvVCso1L5hIkQdnW3bF44Dy6Rq67w7SgS3aetT3JHPgzfS9Istw17xmNLlOYY+kg67V56mQrDz2/8LzoKEMIPn/KPv9JY/+0SoUZgIUYfmPPJ71U+BOTP1nQcZ+kxXMZ46sTVHzetu1VQdCGxitLbclw2594kWKwhC/W+tn+Ahm98kp3bR3rNpr9YyM1nxzt/2/vgvqcpq9WPveb/LsFb3E0HtDCZC1HGJ9oqz395DRf/EzURriJ39LgnlSVsY6I99E7H5MeINTCpGNSbruI/4zhMNLb4dSimz4kHfSAlSsEqM604T1V+3tqro4Pp37pQWuDDGdLr44a/iug5QNyrUEbSuzzxCSqpc9pTo8E/FQhg27ur3tfHd1A3pfNS09SnDoY+CNwnmrtaLPvdG9wqlXbLm74HxgpRC9QlQOxE6Kk/+/socj8vmqzIa7fSnvono3E8URXUDQx0BTrGGOihX/mrH3sBkJZGXPGHsPVXFeC5ATVuerJUF3V2vrL5sVahZcON8ZseHgcPEZNLMS0JpMHRe3rnylTn2yjJpy7DrX+zcd4yKIaEOBa8IUUdEPc6zPz4iVXUpOZFjWlN3DIE3b/qr/vh30gaqMdiH/Z+r+7wQGyYVh5jNbwTqpkQ6a5FaCypJdnz9fFVR4Alo7yl39Jx4s4rxoI4GEyHqiCwb3hWqinxlwrCxV7zZeh4NMo5T5o33+KYP9RG5eMukH0K8EPSzlgVWmTfECrO/g+iuMjQbgtK9aw6t+Fiqpg+ZOnTecyrGgzogvDWKOhzBVm7Z8I5UjRhxmy4lR8V4gulOLI9ZMvK8LGhIrJm0RJ4sCEDTx9K0UQBAjfHCrEWQIE+zLeaynt34/n1SbjZ3yhh793tEvTUuUMfUWr4Fy6K4uNhmszEM06lTJ7VjQa1XzZo3Ke/vhMmY4qMuflTdeCRc3icRW58MHi8vRGZZJv5PiJBppCAAsFrxmsXEUkRNnVS/IyrwrjVv3uSsPu2rMqxm7N3vaTg1ZzdFHVO7SoSvvvpqVVUVADzwwAO9e/eWq1mNRkMI0WgU+r9iWVaj0VDp/lX4D8dxnFarVeZwGo3GZFLuLx3DMAaDIbjnoeCodOxcKFUTp/zdHJsk1+FafnYeu+73m9iCZcHbxOQRnin/47i4+t7kO7uW/KpEtOTTIe/PjorCz2/eeDrvT2nLkKsfyxgwXqoSQoxGo2IfBIV/M31np9jhFD47AFDycA2fHSGNjzJqV4nw7bffBgBKqd1ut9vtje7fRAzD8DzvdrvlarBhHMfxPK9Yr3GWZV0uF8/zyhzOaDQ6HA5ljgUAWq3W6XR6vV5pS82ad0TeH4AmKlWbc7WMvyrNPjsqaE9vZmuOcEe+ZCv3BbYzGvuQ55w9bwGBhfrD0+l0TqdTaHhAPaVk18fkxHqadSnNua4ZsV1A3p/d5k8fK9wWWPg3qdfInlPvDf5Z6PV6h8Oh2AdB4d9MjuMcDodiaV7hszMYDDJ+rBrV8Nk15Vt+u0qECDWMCh7b5k+kasTI2wmr0KVwbaKHy19gOPAuay2s9QrVRlhHv8unyzOWg9nyL7LhnwBAjv4imFOh6wRZmg3R/mXv5K0M/CBi0vtc9OAXDIt/jpA68DcPdSDOvN8EW7mvzHCREUOvVysS86YH9Mf+d+F2b2w/64RPhYgushyFHPuNbJwvVZmqY2IrSIQFm5fs+PoFqRoR3/nSx7/RmaJUDAl1cJgIUQdi2/aFVDYNmMXozWpFojux7MKNfNok65j/UK08UZGaE8zP9wD131qkhlixp/rr2Z7cv37jf+6l56LSmaIufvRrQzT2bkNqwkSIOgpvxTHX0cBithFDVLscBABPp5G60t8BgDI6Pn2qENPLnT5ViO4p4yHIr38DV42/wmrp5Z+AMUHG9lugdM+q1W/cKHj8j9tZjW7C3z6L6SznWSPUApgIUUdRs+4t6fJI13mgNrmvvO2ztiLtvq8NbJQr+ybK6hve2TruQ+7Il0CIO+MK0Shbt9VgpGybVKbjnvENH1SRs7p8/bt3SVkQCBlx6xvJvUerGhRCAJgIUQfhrS5x7AnMWBY5+m5529dU7otacSVxV2sB2Jp824jXG96fas3OPjLHUIvYcyazfxEA0J4zxUG3h/VYTbH500fdtip/hZDc61/sNvYaVSNCyA8TIeoQ7Ns+p4LHV9bEZxn6XCZj46y1IHLFbOKu9lW1Z7Y1vL8y6KQ3xe7TAIBmToQmDKUKq/x1C09sWy5VB1/z916T1c/NCPlgIkTtH/Xytu0LpGrkmHtlnMSLCC7zmpsY91lpiyujdaxzy2hot8lqBwEAYDl1fMvnT0rVhO5DcMV51KpgIkTtn/PQL4LtjK/MGKJM/a+SsXHjnteC14539r3PmfOAjO03g6uG5P0AhljafTq0muk6BY977Vu3eF3+4dUavXH0nf/G2URRq4KJELV/9qCng6YBVxOtQcbGNRU7pbLQfbZ98NMyNt4Mbgv79XSoyAMAOuw+cdw/1AnjAtu++kflif1SNfeGl6KSW9Xqxwjh6hOovROdNc4jq6VqxOC58rbvzpztK3hj+rjHvQOgxtM40cv+dIsvCwIAKfhdhRjqcmLr0uAZZLqOuKL7hJCmeUMoHPCKELVz9v1LQfDPpKpN6C77qAlXtznemF6svYRPudigjQCPcjM6SpjN/4LCtVKVZqg/fQwAWE8X/PFh4C5xZFLmyNveaGB/hNSCiRC1c7bd30plY7+Z4TiEN26AN25AOFpukjOHSNCi8zR1mDjmyQZ2V4bo9ax961beYfFVGY1u3P0fabkIdaNCqE54axS1Z+5Tec5jG6RqmBKhusjhJXBuZAgYE+jMz6Gx4fwK2L/83bOFe6Xq0HnPxWW0ltWPEaoFEyFqzyrWvSutfq7PGKFN7KFuPGERf26VeULESa9TY7yq0QAAVJXk7fnhNanaZdhlvSbdqmI8CDUMb42idot6XdVbA8MHzcNvVjGY8KE9Z4puCyneRHtMo92mqB0OiF5+/Tt3SlOpcZHxI295reG3IKQuTISo3XIeWS24rL4ya+5k6D1N3XjCh/a/gfa/Qe0o/LYtfK6qKDCwMvcv/6c3x6oYD0KNwlujqN3yludJZWO/y1Vbg7cjKd614tBvH0nVzFGzug5vh89lUTuDiRC1W1z3i4hGBwBEa4gY2loumGRBak4wvz3oWvpXcJxRO5YAR9Wpje/fJz2UjUjsMvyml9UNCaGmwFujqN3SpQ7o/tiWygO/azNGaRO6qx2OfFw1zDdXQE0xDwAn98Ps7xp9hxIo3fj+vW5rpa/GaLTj7v1AZ4xUNyiEmgITIWrPuJS+kZEZXq9XltYYeynVmKg+WpbWWh7GqiegpthfqTisaiwBBVt+LNsXWPd44KzHE7oNVjEehJoOb40i1CSmrU/Ffjcg9tu++qJlKoZBjiwnBwNTBEC/OerFEuB1O7YveFaqJvcd2/eye9ULB6HmwUSIUOO05VsMhz4EACK4DXvfVC0Owc2seUqqMUn9YPRjqgUTZO+SN+1nS31lVqMbcfOrhODfFtRm4C8rQo0RPRF/PhyoGVPUCoSc3gsWf74BVme8+nNgdWoFI6kpyz+w/D2p2nvKHZFJmSrGg1BzYSJEqBGGQx+y1dJIDOLse59akdCYLNCbfWVx6D1MUquYtGzL508KXv+05qbYlP5XPKRuPAg1F3aWQaghhK8x7ntLqrq6XetJHKZaNIZY8dofYd9CEpNJB96iWhhBTmxdVrZvrVQdev0LGs6kXjgItQQmQoQaYtz/b+Ku8pWpLoFA56gAACAASURBVMox5FlVwwGa2A8u/j+qbhDnCF5++9fPSdXkvmMzcmeoGA9CLYO3RhGqF+M+yx0KzJPi6HufqMfZwgKO/P6Z9XShr8xotLk3/p+q4SDUQpgIEaqXYf+7xOtfaFc0dHL1ul2dOArXMWueJsdXqnP0ejgqT+76LjBxTPbFN0antsfFPVAHgIkQoboRdzWX94lUdfa9j2oMKsRRsIb9/hqy/X3mh3lQuK7x/ZXy58cPS+vu6oyR/a98uOH9EWq1MBEiVDcu/0vitfvKoiHRlX2jCkGIArv6KRAFAABKmZM7VIihLiW7VhbvWiFVB85+gjPHqRgPQqFQMxHyPK/i0RFqiOgx5H0s1Zy97qAsp3wU5OB3UJnvrzAamnWp8jFciIrCjq+fl6qJ2bk9L22faz2iDkL+XqOrVq0qLS2NjY0tLy+fNGlSampqnbu5XK677rprxIgRBoPBYAjccerTp0+vXr0KCgo++eSTIUOGxMXFud3uw4cP9+rVa8KECbJHi1Cd9AWLGbt/6DrVGF091Fi8QvCQTa9KNdrnGprYV4UwLpD3+2dVJf6BlYQwI256GeeRQW2azIlw2bJlhw8ffuihhwDAarU++eSTjz32WOfOnS/cs7i4uKKiYunSpedFo9G88cYbAOByuXbv3r17924AMJlMs2fPHj9+vLyhIlQvKhr3/UuqubvNUWWibXJiHak54a+wOnFEqxio7qg6tfObl6Rq1pirY9L7qBgPQqGTMxHyPP/VV189/7z/nonZbM7Nzf36668feeSRC3cuKSl5+umnBw8ezLKsb8uhQ4eOHDnStWtXX/Wee+7JysoCgLS0NI5T4a4UakNEZ3Xl4gf4kwdMg+dFjX8gxNb0J5ayNdINSa2z7z2hxtcyusDIdJpzPUSlqRNGMEr/+PCvHqfVV9MZIwdd81TD70Co9ZPzhsa+ffvsdnt6erq0pVOnTjt27KhzERyv1ztw4EApCzocjt9//33GjMBoXIPB0L179+7du2MWRI2yrH3TcWC5t7KwZuVLfOnukNqionHv61LNlTlLMKmTgWjnEeKIByEqjfaYLo77hyox1HLw1w9K96yWqgOvftIYk6RiPAjJQs4rwvz8fEKIXq+XthgMBrvdXlZWFpwdfSZOnBhc/eqrr+bOnUsICd7o9XpLSko4jktKwg8baoj9QGBpJNFZE0pT+qLlbNUhf4Wwzn6hXl+Ggo5+Qhj9hIoBBLNVlOz8X2DIfKeeI3pOvEnFeBCSi5yJ0GKx6HS64GTmu5izWCwNv3H37t3x8fFxced1v961a5fT6ezatevu3bv37t370EMPmUx1z2Hodrv37NkjVRmGycrK0mq1LT+T8zEMw7KsjA02zHcsURSVORzDMBqNhlKFJu0Kx/+k53SeUFXkKxMNF9FtFDl3CEKIRqOp9QWrYcFPBz1Zs5i47KbfNlHy9wQACCFarZZhFOqosu6Lp71u//QC+oiYix/4r06nb/gtofCdnWIfBIV/dgCg1Wrb9OeuYUoeLvSzkzMR2u32WtH4rg5tNlsD7xIE4b///e8rr7wSvDEmJmbcuHEDBw4EgOzs7Ly8vI8++uiBB+r+bl5YWPjZZ58Fb7n77ruzs7NbdBJ1YFmWYRjFfq6+zKTMsXyH0+l0Sp6d0WiUt80zR1dJZXPPi0xRgW9UDMNwHNf0PzfkxEr27N5zFYaMeLpZ0Ybj7BpQ6wZMWJ08tPnIhsCCwKNv+mdCWvdwH1TJxyLK/+yCe8uHm8JnBwBKHq7hs2vKN0U5/+ByHOdyuYK3CIIAjf02b9u2jeO4WqeRlJQUfDs0Jyfn/fffnzt3bmJi4oUtZGdnv/deYDk0Sqndbq+pCen+WDCz2czzvNvtlqvBhnEcx/O8Yl+EIyMjXS6XYmM6jUajw+GQt82qnT9IZbbruOAffXR0tM1mq/MpdZ2itgbmDHOnTbUynaA5v0iynB2z879k/QvUECfO+C8kD2pgz5iYGJvN5vuUhRelaz54CM59n4jr2r/z8Ctl/IjVKTY21mq1KvZBCMdvZgPi4uIsFotiV4QKn118fHy4fz2CNXx20dHRjeZCOW+qREZGer1ej8cjbfF9RCMiIhp414oVKy4cX5GXlxd8Q9VsNlNKCwoKZIwWtQ/es8fdxefmWyGMsdfkFjfFWo5pT26Qqs5+Kqw7SM4cIKufAo+DWIqZdc83/gZFnNi27Ez+Nqk67PoXcOAgak/k/G32Xa4FZ2aLxcKybHJycn1vEQRh//79ZrM5eGNZWdkjjzyyaNEiaYvvekWxb0+oDbHv/k4qcxkj2KiWLx/PHf0awP875knM9cY3dDUWJmT9S0DPXQMxrPIBXEjw8tuD5pFJHzKlU88RKsaDkOzkTIQDBw5kGKaqqkracurUqV69ekmdXAoKCmrdOy0tLXU6nbV6wURHR/fp02fSpEnB7eh0ul69eskYLWoH3EVbLRsDd8VNA2e3vC3Rqz/2jVRzdb8ulMBahpw5SAp+l6p0yF3Kx3ChvBUfB6+1NHhOqxjIgZCM5EyE8fHxEydO3LDBf3PJ6/Vu2rRp1qxZvmp+fv7999//4YcfBr+luroazvWpkRiNxgEDBkiXiS6Xa926dXPmzImKipIxWtTWCY6qM19eT3n/vNhEazD0nt7i1rQnNzCOU74y1Zr5DBUWmCXb3pOew9GUoTTzEuVjqIW31+xd8qZUzb74xqjkbirGg1A4yNw78fbbb//kk08WLVqUlpa2bdu2yy+/fPDgwb6XUlJSJkyYMGbMmOD9zWYzIaRTp0612pk5c+ZXX30VERFhMBi2b99+xRVXTJkyRd5QUVtn3fCO6KiUqtGTnmYMLf+qpC/+WSq7M2ZQjaJd7HxIySapTHPvVz6AC+376S23zX+PR2eMHHBlHbNEIdTWyZwIdTrdnXfeyfO8xWIZMWJEcF8dk8n04IMP1tq/a9euX3zxRXR07YkcOY679dZbvV5vdXX1jBkzmjUODHUEnpP7rX8G1o6PGv+AecRtLW+OirqiX6SaKpeDAEBTh5OaYgCgSQNo1qRG9w83l/XsoRWBJTgGXfWQ3hyrYjwIhUlYxqvpdLr4+Pgm7nxhFpRoNJqmt4M6Dk/F0dOfzqIep6/KRiZFTghpQmptxQ7GedpXplqzJ2l0qCG2iDjpDSZ5EPU4aM510Aq+/B38+T/SCHpjTFLO9Ht4ATusoXZIuYHbCMlCsJ4u//Rq0X5W2hI98UmiCWnktf7wF1KZ7zyRMrpQWms5DScOulWdQ1/A67LnrfxUqvadfq9Gb+AVHIuGkGJwMBBqY85+f59QXSxVI8fcaxo0J5QGGccprjAwJN+dMTOU1tqNY398xzv8Y3m5yPgeF6uxIiNCisBEiNoS56FfXPlrpGrE0OujJ4Xam9+Q9xEI/ol1hMhMPk3Zh3MndzI/3sz8/hg4qxrfWUHBTwezL/mLRqfcfGAIKQxvjaK2g9KqX5+TalzXUTEzXgnxWRrx2rnDn0tVZ++7QME5U0jJn8x314LHAQCMs0q87MNG36KMwi0/VRf7l+BgWE32RXg5iNozvCJEbYa7aKu34pivTBhNzGXzCRPqNzld2RrC+ydFFLl4d7drQ2ywGSwlzJIbfVkQAKDquHKHbhDvsGz9IrDcbtrgKcbYeieHQqgdwESI2gzH3sVS2dD3Mm2nnqG3KeoCnZZdvW6lrFLLHYhedtntwbdD6ZA7FDp0Y3Z+85Kjyj+3AKvRDZz9uLrxIBRueGsUtQ1UFBz7f5KqppwrZWnWkzTaPvApfeFib8JQZ597ZWmzKcieL6A0MI01HfMk7R3C/HDyOZO/7fDvn0nVPtPvjU7toV44CCkBEyFqG1yHVwi2M74yY4gy9LhIrpadOQ84c5Rehp6U75PKNGuSmKt0AHWiVNz86eP03KzfkUmZ/a+oPQkGQu0P3hpFbYNl/dtS2dB7OrAqDfWTCe11JfgecEal0SlvtYbh8wBwdP2is4XSusRkxK2vs1qFFv5FSEV4RYjaAFfBH+6i7f4KIeZRreVxWovR9DHCzRvJmUM0fTRw9U6upCTB49717Xyp2nX4zOTe6sywg5DCMBGiNsCx53upbOg5Sdep7S3IRUq3kiPLaHQX2v9G/7VgTBaNyVI7roD8tQsclSd9ZVbH4XJLqOPARIhaPUqdhwOr9Jlzb1YxlpYhRRuY764BwUMARNspOuapxt+jLNHL71/2jlTtdektEfGdVYwHISXhM0LU2vGn9gsW/5UK0Rm5zFHqxtNcpHQLs/QOEDz+atn2hvdXxd4f37Kd8U9cx+q4PlPvVjcehJSEV4SotXMFXQ4auo1vW91kyC/3MfsXBW+hPa9QK5j6WE8X7vvpLamaffGNhuhEFeNBSGF4RYhau+D7olwP9Rdtb4bKo7Wz4KhHaf9WN13ZjkUvCB63r2yITsTVd1FHg4kQtWqCo5Iv2eGvEGLIbkuJkHDRwdevtN88cURI6yaGw5mjOwq3LpWqQ+c9pzNFqRgPQsrDW6OoVXMdWUVFwVfWJfVlI9vSpJfUGC9O/4DZ9i6N6ESH3EVTc9WOqA47vn4eqH+53fjMAZkjr1I3HoSUh4kQtWrugk1SmcueqGIkTVWwhthP0+7TQG8GANpjutBjutox1at0z6pThwL/w4PnPtNKhvYjpCS8NYpaNTYySSqb+l4WeoOM83T08knxXyZHbHoAzs0lJhfhjzfY765mfrmPWTQDzl3ItmY7//d/Ujm1/8U4gh51THhFiFq1yLH3C9Zyz6kDpsHztMl9Q2/QsPdfmoqdAMDlL3B3vdKTPDb0Nv14m3fDK74iKd9PLMU0OkO2xsPg1ME/zhbs8ZUJYYbMeVrdeBBSCyZC1KoRrSF25uvytUf1Rcvla+085MD/wG31V4wJNLK1D0g/+OsHUjl96NSY9D4qBoOQivDWKOpA2OrDjMM/Np9qTN5Ow2VsnOz+TCrTgTdDyIsGh1Vl4b7iHb9J1d5T2vz0rQi1GCZC1IHoytZJZU/SSMrINza/bDupOOQvs1ox5zrZWg4HSjd//oS03FJ85oBO2XJ+J0CobcFEiDoQTflWqexJHidjy8R2SirTrMkQkdTAzqo7sW1Z+eEtUnXg7CdUDAYh1WEiRB2IaErxlwjLp02SsWXa9SKa0AcAgIsWR7bqmVkoFXd/94pUTRs8ObW/bKscI9QW1fsYY+HChdnZ2YMHD1YyGoTCyjHgUcJb2Jp8V69bBXOGnE1rjeL1Kw22AieXBPpIOVuWW+GfS6pK8nxlwrBD5j6jbjwIqa7eRMjz/FNPPbVgwYK4uDglA0IofKjWbBv1VuP7tQyrJckDwOEIV/syOfjrh1I5a/SsqORuKgaDUGtQbyL0eDydOnX69NNPnU7n1KlT8dIQoXag8sT+M0f9c7cSwuTMfFDdeBBqDepNhDNnzpw7d67JZBIE4Zdffnnuuee6du169dVXcxynZHwItQGCB3gbGGLUjqNxeSs/lcop/cZFJmWqGAxCrUS9nWUSEhJMJhMAsCw7ffr0Rx999NixY2lpaQ8//PDRo0cVjBChVo2c3su+3599pwf55X61Y2mEo/LksQ3fSNUeF7W6BaEQUkW9V4S7du1KSkpKTk7Oz8//4IMPPv30U0EQbrjhhuuvv37z5s1ffPHFVVdd1b9/fyVjbdSWLVusViultF+/flqtVsaWCSFEqcmIyTnKHA7UODtljqXEEUUv+e1v4DgDAMz+r2HMA8ScFa5j1aVZZ7d/+bvSuoPmhPT0IVOa9T/T3n526h1LOqKSx8Kza0C9iXD79u3r168vLy9fuXLloEGDXn755Tlz5viuEX3578MPP3S5XLm5rWhlmVWrVlksFgBITk7OyMiQq1mWZem5dWoUoNFoAECxIzIMo9VqFfutZVlWr9crcywAIITodDqWZcPUvrjx38LpvdLBWEO08mcnik2aOtxZcyZ/9ZdSdeBVDxmMpmYdTpWfnWIfBIXPDgD0en37PjvFjtXw2TXlj1u9iVCn03333XfXXnvt5s2bhw0bVutVj8czd+7czz77rFUlwieffBIAKKV2u93lcsnVrFar9Xg8brdbrgYbxfN8E/+6hU6n0/E8z/O8ModjGEbGH02jOI5zu91erzcsrQse9s9AH1Ta80rB3NmlYK9Rg8HgdrsFoUnLXOz68R2P2x+bKS41Y+Ss5v4gFP7ZGY1Gt9ut2AdB4bMzmUwul0vJ77tKnl1ERISSh2v47JrSr6XeZ4Qej2fRokWffvrphVkQAO69996cnBzfBSJCHVTxH+Cq9pcNseLF/1Q1moZ4XLbDKz+Rqn2n3c1o5JteDqE2rt4rwsGDB6ekpNT36t/+9rdJkyZdccUV4YkKoTaAqcyXyrT7VDDEqhhMww799l+33Z+z9ebY7hNa91SoCCmroVujwf1NFi9efOTIEaPROG/evNjY2J49e/bs2VORCFHH4ik/XLnkIdFZHXXJE8Y+09QOpyFixgRWawSPg7I6OuAvaodTL4/TemD5e1K196TbNHqjivEg1NrUmwjXrFkzfvz42Fj/l1zfxZ/dbn/55Zeff/55haJDHQ0VK/53p+fkfgA4+93dhuzDRNOKx63GdhP/shZOrKepwyE+W+1o6nVoxcduW5WvrDdF95p8u7rxINTaNG/JNJPJdPbs2TCFgpB959e+LAgA4HWD2KRuIA0jXqdp53zGWuTqdZsnsY4H3qGg0V0huqu8bcrLyzsP/vy+VO099U6dsVVPhYqQ8monwmefffbw4cOCIBw9enTp0qVRUVHSS5TSI0eODBkyRNkIUUdBBU/1yv+TqsacK4lOht5Y3I4X9Pv/AwC6kpWVs3ZTfXTobbYhR1Z94bL6v7zqTFG9Jt2mbjwItUK1e40+++yzn3766cUXX5yXl1frJY7j5s2b9+9//1up2FDHwhdtE6ynfWWiNURd+pQszWoLl/rb9NpZe4ksbbYVouA9+EvgcrDnxFvwchChC9Vxa5TjuDvuuOPs2bMzZszo27ev8jGhjsmVv1oqm/pdrolKDb1NYilgbP7kR1lOiO4RepsAAFQkf7zMnFhHu14sjngYlJ2zo+lObF1qq/CfvkZn6DPlDnXjQah1qvcZ4R133KHwTASog3Mc/l0qc93lWSqWlKyXyt7EoZSRZ/AcyVvC/PkGAJCyHSS+F+0xXZZmZRfcWbTbuGv15tY7wAMhFdU7oD4uLi4iIuLC7c8991w440EdlGAr95w+6CsThtV3GydLs6Q0kAg9nUbK0iYAkMI1gbK1TK5m5VW887eK47t9ZUKY3lPuVDcehFqt864IlyxZUlFRceuttwLAr7/+umfPnlp72+32Xbt2KRcd6jCcR1bDuemmdJ0HskaZrl2K10lFT5J8ibBsh1Smia3y8QGlu757WaqlD52KKy4hVJ/zEuEDDzxQXFx8/fXX6/X633//fcGCBamp5z2n8Xg8tbYgJAv38Y1Smes2XpY2WWsBsZ7wlSmr98bLtLi02wJVx/xlwtBOOfI0K6sT23+uLNznKxPCDLjqUXXjQag1Oy8RLl68uKqqyvdoMC4u7ssvv7zkkktqveGGG3ANMyQ/1/ENUpnLGitLm7rSVVLZ22kEZeV55k1O7wV6bibo+GzQ1fEEQWWU7ln8ulTLyJ0Rk9ZLxXAQauXOS4QDBw6UyrfccovZbL7wDb4VHhCSkafiqFDjf9JGtAZ9mjyXbtrilVKZT71YljYBACCwYgBNHS5fs7Ip3r0y+HIw58qH1I0HoVau3s4yiYmJBoPhwu0///xzOONBHZHraKBLiz5jOLAy9O0kgkt7epNUlTER0rRRtNeVAAAxWTT3PrmalVH+mgVSuUvuZTGdcVpghBoSuCKsqKg4ceJEw3vX1NT88ccfDz74YJijQh2Lu+APqcxljpGlTe7Qf4ngX6JMiEgXorrL0iwAAGHE6R/ApDdB2xqnrnZZK0t3Bwai9Jl2t4rBINQmBBLhihUr5s2b1+gbpk6dGs54UMdDqSs4EWbJkAgZxynj3sBDMj5jRuht1tYqsyAAFG5eInj9yyxHpXRPyBqkbjwItX6BW6NxcXF33nmnb9Hk+lRXV9c5uBChFvOcPiTa/ZNhMlykNrlf6G1yeR8Tj81XpvoYZ9/WeAMzTPLXLpTKWWOuVjEShNqKwBVhr169zGZzw7PJREVFXXPNNeGPCnUgrqCBE/quIwnDht6mvnBJoP1BT4h6WWdUoRREL7DaxvdU3NnCvWcL/MN/CcNmjpqlbjwItQmBK8L09PSRIxsfcdylS5dwxoM6nOBEyGWODr1BTcUu1lp4rsLx3a8NvU0JKfmTea8381YG2fZe43sr7siqL6Ryas6EiPjOKgaDUFtxXq9RSqkgNLQCnMfjefnllxvYAaHm4kt2SmVZEqG+8EepTDMmU20do4BajFn3PHFUEIFn1r8ArhoZWw6d1+04vukHqdrjoutVDAahNuS8RDhhwoRu3bp5PB4AuPvuu8kFdDqd3W5XKVTUDon2isDSSxpOkxj6Ou9UV/hToP1ust4b9Njh1O5zxxFa26IThVuWepxWX9kQ3anzwEvVjQehtuK8AfUZGRmUUoZhACAuLu7++++/7LLLgnew2Wyff/65ogGido0v2yuVdUm9CVPvcihNpKnYxdqLfWWqMdDM6eCmDb+l6cjJnSB6/ZWYbqBvXWv7HV3/tVTuNvYahg31PxOhDuK8j8pnn30mlXNzc3v06NGjR+31244dOwYIycRdtk8qa5NlmL06+L4onzqR1ZrAbQu9WZ/gubbFlCFyNSsLy8ljpw4FJhDoNlbOJ6MItW/1fmecPr3uJdYeegina0Ky8Zw6IJW1SX1Cb1B3bj16AOAzZtQxN1IoTgetx9LKEuGh3z6Slu9I6D40KkW+CQQQau/qnWINACil//nPf/r37x8ZGZmenv63v/2turpaschQR+A5uV8q61NCHUGoqToQfF+U7zwxxAZroRFJ/hLDQsZ4eRsPhdtenb9+kVTtPfk2FYNBqM1p6CnCbbfdtnjx4lGjRg0ZMqSqqmrZsmUrV67cuHFjdHS0YvGhdozyDu/Z4/4KYbRJvUNsUFf8q1T2pEygGpknf6GjHqPOKqg6RgfeSqPS5W08FMc3/M/r8vdiM8WmdBla9+0chFCd6k2EK1asMBqNZWVl0hB7SumiRYtefPHF1157TanwUHvmLtpGRf9wHW18FtGZQmxQV/ybVObTJoXYWh24aHH6+/I3G7JjG7+VytkTb2Y0rXGwP0KtVr23Rnfu3Pnmm28GTzRDCJkzZ47JFOpfK4R83IV/SmV9RqjrGTHOcs3Zc8/wCMOn1l5Ks72qLj1Scdw/qIMQJmvMbHXjQajNqTcRRkdHs2wdk10lJCSEMx7UgbgKAr0c9RkjQmxNe3K9tF6uN26AaEgMscG24ljQ08HkvmNNsSkqBoNQW1RvIszOzt6+fXutjXa73Wq1hjkk1DEIfPCcMjIkwlOBJSz4lPEhtlYHZxU59htYT8rfcggE3pW/NrD6IE4uilALBJ4RFhQU1Mp8r7322qhRo+Lj431Vl8u1fv36999v0jMSr9er0TRvPC+llFwwVUcL2kFtgrt4J/W6fWU2Jl0THeqsmMGJ0NOp8Vlzm8dezn4+AezloDWK836hCaH265HLsU3fu6yVvrLeFJ0xPAwLTiHU3gVyzNatW+fOnZucnBz8XDAvL6/WG955551nn322vubsdvtnn32WmJjIcVxJScmMGTNSU1Pr2/mOO+7IzMxMT08nhJSUlGi12r/+9a++lyil33zzjcvlSkxMLCoqys3NHThwYMvOELVOfOluqcx1yQ2xNcZxirUW+Cuszps4NMQGa7e/byHYywEAPA7IWwytJBFSevCXD6Va9wnzNDqZR04i1BEEEmFcXNwjjzwyf/78UJqbP3/+xIkTx44dCwAVFRWPP/7466+/HhUVVefObrd706ZNGzduNJvN06ZNC17g6ZtvvqmsrLz77rsBwOv1PvrooyzL5uTkhBIbalXOm1wttX+IrWlPbZDKnrgBsg+cIEd/CVRazcCJwh2/nS30T81DGLbnJTepGw9CbVQgEebk5KSkhPSY/dChQ0eOHHnmmWd81fj4+MzMzJ9//nnOnDl17p+bm3vbbbdZLJbY2POWi+N5/vvvv3/ppZf8IWo048aN++abbzARtid80JwyupAX4w0eOOFJkmEJi/PYTsGpXf4yYWhWa5nMeuuiwNfWLkOnRSTiEmkItUSgs0xiYmLv3g3d8Hn55ZdfeOGF5cuX17fDtm3b4uLigh/pxcTEbNu2rYE2NRpNrSwIAPv27XO5XElJSdKWmJiYgwcP4sIX7QnD+WesJjpTiFeEROR1paukquwjCMnRX6TZyyBlMJg6ydt+y5wt3Ft6ILCUY7/L/6piMAi1aQ1NsQYALperrKzs+PHjx48fnz179pVXXvnxxx/Xt/Px48drLXBvNBoLCgrq2x8AHA7Hzp07N27caLFYpI2+twQ3ZTQavV5vSUlJw9GiNiRm2kvapN6a6M6xl78W4lB6zdk9xOOfWVs0JnvjZX6cTCoOS2Uxa7K8jbdY3spPpXJqzoS4DLxfglALNdQh85lnnpk/fz7P89IWrVb7yiuv1Le/1Wo1GM57Vs9xnNfrdTqdtbb7FBUVbdiwYciQITzPP/PMM9dee21ubi4AWCwW39qHwe34ttd53Orq6tWrV0tVSumoUaMiIiIaOLVmYVlWq9Ve2KM1THzHolS2xYMaxjCMTqfzrb2lAI1G4/tpcpnDIh/ZIkubJCYTGC2IHgDwdr+a4wK/bL6zC7HjMe05xbv7E6AU9JG6gdcRjqtvT+nswo231xQGrcGbM/0uBY6r2Nn5EEL0er1iHwSFzw4AOI5r32en2LEaPrum/Omu9w/E0qVLt27d+sMPP7jd7vLy8qFDh1ZWVu7doWHwzQAAIABJREFUu3fmzJn1vcXpdBqN53VS8CUzu91eZyKcNWvW4MGDfeVrr732zTff/OCDD6KiopxOJ8uywdFL7dR5XIvFUqt3a05OjowTohJC6pxbIEwYhtFoNEomQt8RFTuc/MeK7sJP/Vaz/0MxuoeY+49a7Ws0GlEUQ2q/5zT25t9p2U6mx1QS21BPGcX+J/et/tLjdvjK5sT0zGFTCRP2X1Elf098FP4gKHl2qvxVUexwAKDk4UI/u3rfvHv37h9//FGn09lstm+++caXsSZOnPjqq68+8sgjdb7FZDI5nc7gLYIgAECt7CiRsiAAZGdn2+32lStXzpo1KyIiwuv1Bo8g9LVT3+xu6enpTz75pFSllNrtdptNtlXozGYzz/Nut1uuBhvGcRzP86H+7W6yyMhIl8sVfN0fVkaj0eFwyN9u3CgYNwoAwCUABH700dHRDofD6/XW+8Ymis2B2BwAgAZ/r8J1ducTBe+eZe9J1e4TbrA7nA3sLxdlzk6i0+nsdrtiHwSFz06v19vtdsXSvMJnx3GcjH+BG9Xw2TXloqjeG2KRkZG+67CIiIgDB4I6+AXdsbzwLbUSodfrZVm2zsvBgwcP7tgRWObUlyyLi4t97QBA8Il5PB5fJI2eD0LtXtG25bYz/tWmNDpDj4uuVzcehNq6ehMhx3F//PHH7bffXl1dTSn95z//6fV6q6urN23aVN9bkpOTayXC6urqrl271nmL9u23337nnXekqsvlgnNZNjk5GQCCm7JYLBqNJj29tYzfQkhF+356Wyp3G3ctZ67d7xoh1Cz1JsK5c+e+8sorCxcuPHXq1COPPPL222/HxMSkpKT06NGjvrfk5ubW1NQE32QrKSkZMsS/kLfL5Vq7dq0v4QFA7969H3/8cWnP0tJSABg2bBgA5OTkGAyGM2fOBLfTu3dvXPgCKY2KzOZ/Md9dQ/Z+pXYofqV7Vp8t9M9FQAjTd9pd6saDUDtQbyI0m80//vijxWLp2bNnSkrKli1b/vrXv7700kv/+Mc/6ntLv379cnJy1qxZ46uWlpaWlZXNmOGf/PC33357/fXXV6xY4atOnjz52LFjvrIoiosXLx47duzQoUMBwGg0Xn311dKePM+vX79+3rx5IZ8sQs1D9i8iG14iBauZ3/5GSv5s/A3ht39Z4D5Kt1FXRCV3UzEYhNoHmbvpu1yuhQsXGo1GjuOKioquuuoqaa7RysrKX375ZcqUKdII+m3btu3fv59hmPLy8szMzCuuuELqxE8pXbZs2dmzZ2NjY4uLi4cPHx7cs6Zhvs4y0qVn6LCzjIwUfmgfHR1ts9la3FmGWXyDNLmaOPkt2m9uw/uH++yqSw4veWyMNLp/3jvbuIQsX1cyBSj8s4uNja2urm6vnWXi4uIqKyvba2eZ+Pj4iooKxQ7XaGeZRvuUNvQypfTDDz98//33CwsLo6Kirrrqqn/84x/1TRzqw3HczTffXOdLsbGxta7qhg4d6rsEvBAh5LLLLms4dITCi1JSGjTSMSnUCVFDl7fyEykLJvUelZg1sL7BtQihpmtoGPUdd9zxxBNPpKamzpw5c8CAAUuWLBk9enR1dbViwSGkpqqj4PSvcARcFI3vpWo04HU7jm38VqriFNsIyaXeK8KVK1e63e6ysjJpxD6ldMGCBS+++OJrr72mVHgIqYac2iOVadIgIApNvlOfwi0/eZz+ZbGNMUnpQ6aqGw9C7Ua9n+0dO3Z88sknwfPWEEKuu+467LqJVCZ6GHspQNgfrhDRE6ikDgv34RqVv3ahVO42bg6j0aoYDELtSb2JMDo6us4ZgBISEsIZD0INYe3FMT/kxn43IOqXy4ggW3+oOonZMyBlCABAXA9xwI1hPVajrKcLTh/e7K8Q0m3staqGg1C7Uu+t0R49euzcuXPQoEHBGx0Oh9VqDX9UCNXNuPMl1l4MANryLbqSFe4uM8J4MK1JmPsz2E+DMQHCP5Nnw46s+UrqJtOpR25kUqa68SDUngQSYUFBwfbt24Nfe/3110ePHh0XF+erut3ujRs3Bk8Hg5CSGMdJfeGPUlXkwn9zghCISGp8tzATvZ78dV9L1e4TcEwtQnIKJMItW7bMmzev1uiIP/+sPYj4lVdeefXVV5UIDbVHnsoTjvw/9F1HshGJzX0vd+QLEP0jAoWYXp5Ow+WOrpUq3vmbq8Y/0ZLOGJkx/HJ140GonQkkwri4uEceeWT+/PkqRoPaN8/pQyX/mSR6nKwxttO9qzVRqc14MxW4/MA8Z87smwHCvEKk4AG2VXRIOfTbR1I5c9Qsja6OWewRQi0W6CzTv3//66/HaexRGNl2LBQ9TgAQHJWuwyub9V7WXso4TvnKVGt2Z82WP74gZMNL7L/S2Q8GkvL9YT1QoyoL9506dG6me0J6XvIXNaNBqD0KXBEmJiYmJta+W2W1WhcvXpyfnx8bGzt9+vTu3bsrGx5qV/iyvVKZaeatUcGYLER1Y2uOAoCz5y1UE85hPJVHmS1vAaVgKSF/vEyv+DKMx2rMwV8/lMrJfcZEp6k8rh+h9qehKdbWr18/e/bs8vJyX/XRRx998cUXH3vsMUUCQ+2Q93SeVNYl92nemxltzeSl+mP/Ew2d3F2vkDmyWocqXAuBSSDDfAO2Qc7q08c3/SBVe0++XcVgEGqv6h1HWFBQ8NRTT7333nsnTpyorKwsLS1dvnz5ihUrfvjhh/reglADvNUlgsM/Yxmjj9BEN3t1SZGLd/a52515VdgneSlcKxVp2ojwHqtBh1Z8LHr986FHJmd1HjhRxWAQaq/qvSJcsGDBTz/9FBMT46v6FiMcP378XXfddeWVVyoVHmo/PKcOSmVNp15Q13LNrYLAk+I/AtWM8WoF4nU7jqz6XKr2nnwHUXuaN4TapXo/V5GRkVIWlOh0uoyMjPBGhNopviwwdac+Vf2VHOp15gDwNn/Z1InG9VQrkPx1X7us/mtozhzbbRzOJoNQWNSbCGtqaupcKwtnlkEtE9xTRpeSo2IkjTAlSaMmaI/pal25UlE4+MsHUrXHxX/BURMIhUm9iXDo0KGPP/548Gq0Ho/n3XffDZ6GG6Gm40sDV4S6lFZ8RWhOFqd/RDuPoDnXiWOeVCuKkwc2WE8X+MqMRtfr0lvUigShdq/eZ4STJ09eu3ZtQkJC3759TSaTw+HIy8vLzs5etWqVkvGh9kG0VwiWk74y0eg1Ca16HA7tMY32mKZuDIVbfpLKmSOvNEQ3eyIehFATNfTsff78+V9//XVcXFxRURGl9NFHH129erXBgPdnULOddzmY1Ie0jhlbWi1R8BZt+1mqdh2J3dMQCqOGxhE6nc5p06ZNm6byV2PUDrhLdkllbUo/FSNpE07uX+eynvWV9RExyb1HqxsPQu1bvVeECxcuNJlMGzZsUDIa1F65j2+Uyvq0wSpG0giPnRz8LngcoSoO/Py+VE4fPAXX4EUorOpNhIWFhfPnz+/Tp/b0H3l5eXXuj1B9qNftLg6s8MVlttbrG0rZ/13FLL+L/XY22fKWWlFUnthftm+tVO1x8Q1qRYJQB1FvIpwwYUJmZmZsbGyt7S+//HKYQ0LtjbtwM/X6ux/r4rqy0WlNfy9rOc7W5Icnrguc3g1lO3xFcnipQge9wKHf/iuVO/UckdCtFV9AI9Qu1PuMUKvV7t2796OPPurfv7+0Nq/T6ZSmHkWoiVxB90WN3cc1/Y2GfW+Zdr4EQB39/uYYFPaRDKQoECdEZ4T7cHXy8s7g/qJ9p92tShgIdSgNTbH2+eefZ2Zmrl69Wtpot9szMzMVCQy1H+6CTVK56YmQiLxx75sAFAAMB99zDHoi3PNfBydCmq7O/duibcs9Tv+cFcaYJJxcFCEF1JsI4+PjFyxYMGXKlFrbcc1C1CzU63aX7paqxqzRfNPeqDm9hXjt/ka4eAWW4SUlW6QaTR8V3sPV4+j6RVI5a/RswrCqhIFQh1JvIrzhhhuio6Mv3P7kk6rNtYHaIr5kFwj+3MfGpGuiUniHoylv1J5cH2gkZXw4YjuP4wx4/HkXIpIgVoUh/1VFB8r2B846c8zVyseAUAdUR2cZt9tdVlbWuXNns9l84au9euG6oKgZXCcCl1lcxvCmv1EXlAg9yc14sthCEUmQPMhXpAP+EvbD1WXf0n9L6yB2yh4e01m1+b4R6lBqJ8LXXnstPj4+NTW1b9+++/btUyUm1J7wRVulsj59WBPfRXiL5qw0GQ3xJIX/RiVhhKu/Fye/JV61UBz+YNgPdwF7ZVnh5h+lat8Z9ykfA0Id03mJ8JNPPnnkkf9n77zDojj+Bj671+HuqNIRVJCmooC9EnsBKyaWxBI1GkssMUaTN9FEk1gSE6P5YUw0RozRWMAuVmzYaQpKEaT3A67v3e2+fywu53EcJ3csiPN58uSZmZ16nPu9mfmW1Xw+v2vXrrm5uWPHjpXL5S01M0hbgCCUuXUWhBwPYwUhq/gWIDRkWm3ti/No8bTJ5hNdpxMdh7dIxIn0y3/jGjWZtnHzde8O1WQgEJp4RRB+//33Fy5cKCoqSk5OLi8vDw8P37NnT0vNDNIGUIte4HVR6QUsBx8jG7JeORcdaP6ZtTJwtSrj2kEq6zdqfusNXAyBtDnqBGF5eXm/fv1GjBhBZjkczrZt2548edJCE4O0BbD8R1Sa7dYDGB1gnV0UR6VVzoPMPK3WR3b8CZmomEyzLYQd+09p2flAIG8VdVqjubm5gYGvRInjcrlCoZD2KTWd48ePi8VigiCGDBmiV+W1aSAIwmAwmExDDsrNCIqiTCYTx3F6hmvW1am0otJz2wczmUxydYZbobKiOm8yKJNwG2TK9IxqK3pOxG1CEEAM+Byxa7q+qDGr0wNBPD69k8p5D5nOtTTq3x35t0Po2js2cXUmQOc/hBZZnd7g581Bi6yOtrFMX11dYxzH64u9+iUxMTHjx483ZcjmQyKR1NTUAADUarUZ3w5kV7S9bpCX0DYcaLbVYXl1O0Kue7CRS2MVXKXS6nYhgC1s8uSMXB1+Yg4oSSYAAGVpyPz4po4GmvaHy310QZSXRqZRBrPr2EXGd0LzV4W2segfsUVWR+dYcHUGeEWKqtXqRhscOXKk1QrCDz74AABAEIRUKlUoFObqFsdxjUajUqnM1aFhGAyGSqWi7Ydw862OwNWKwmQqy3DuplKpWCxWo2Nxc85Racx5kClzIwhCrVYb/mIjNXloyct5irJNGc6Y1dUnKWYHlfbsM4Fr42JkJ+TqNBrN647YNJq2OlOg8x9Ci6yOth1hi6yOtrFMX90rgjAyMjI7O1tbtF6/fj0/P5/KisVikUhkyniQtwd1aTqB1drOMwSODKGzMa1QaQEn/zyVxVxCm2Vy2ryoU8whXEKafbhXqchJLk6rc0HXNQxaTUAgdPOKIExKSkpKStKpER//yknRmDFjmn1SkDaBUms7yHYNNFBTG97TPwFeu4HT2Pip2zV77AVESxACD3oVcwgi4b8fqJxL18E27f1pnQAEAtExn5gzZ05ZWVllw2RlZdF84wp5c1EV1TlkYLt0M6YJohRx0/dTWbnfgmZ3MUoQSE7dlSTenlZTjeSY7fkJF6ms/6iP6BwdAoGQvCLVQkJC7O3tDdS2sbFxcnJq5ilB2ghYYZ0gZDl1MaaJxZOdCFZDpnFuO2VHGqwICKB+6Qbc0pHyskYDhclXE/6ri+7ZzivYrfsw2kaHQCAUdTvCHj16fPjhh4022L59e3POB9JWIAhVcZ0RKse18R0hopZy0+pi0sq7LCYY3GaZ2yujonjoN4DBASxLfNj3xls6mohMVHx910KCqNUE4QrsBi/7AxrRQyAtQt2OkMFgMBiNx3yxsLBozvlA2gjqqnxcUbu3Q3lWDCu3RpuwCq8j6lrlGpznqPBt/GeZWSACP8C7vEcABDBY9IwIALi9Z4VC/NLnDoM5+JM/+PaNf0QQCKQ5oOn3L+RtA+HwESabTHM8+xmz12EXXKLSyg4T6NgOvoRgsOmUglk3/8tPrFtsj4i1zv4tEwcYAoEAKAghzQTDwsZ24s9Mu44cz742ozcY04RdeIVKYy5Dm21qLYxaKXv477dU1tG3b5ewJS04HwgEAlVAIc2FZfcIy+4RRlZmVqWhklqLVYJpoXbq12zz0oIgQEU6sHQAPBs6hgMAAPD49C5ZZRGZZrA4Az7agdB1MQmBQPQCBSGkVcDKv0ylVc4DCQaHhkHRE+8jWRcAk4dPPkjQYjiBSatTz0VS2YAxCwWOnjSMC4FADAB/ikJaBeyCOkGIudJiRVCcgGRdAAAAtRx5ENlYbfOQdmEPJqvVIeIIbLuOX07PuBAIxABQEEJaHkQlYZXVBbJXuTa/WzUAkMKHdRk2n4YRS9PvJZ/8hcoGjFnE4tIxLgQCMQwUhJCWh1V0HWhqrdo1Vp01fA8aBkVK6rwJEo7GeoBrMlUF6Ze3zdRgtb7gOXwbvxE02YdAIBDDwDtCSMujbTiBub5Dz6BIcWJdxql7s45VkHT51p4VSslLh/UI0nvWdyyeoFkHhUAgRgIFIaSlIXB2XiyVw1xpMZwgcFCZWZtGEMLBKA9wTSPrxpEbkUuAVsCdoIi1MAY9BNJ6gEejkBaGWZ6AykvINMESqBxpMZxAUMLOp3ZQt36AY1RE+CZQlZcWv3e1thT0GTqr24QVzTQcBAJpAnBHCGlh2HkXqDTmOhQw2PSMS0w6AOK3A5SJ9zG/WFIrZXmPLuQ9is29f0aNyclClMEMGPtx0NR1Zh8OAoGYAhSEkBaGna91Luo+grZxCaE7MfIns3dbXZhxZ+9nJc/u4Bq1zqN+87d7DXrP7CNCIBATgYIQ0pKg8lKmKLU2gzDedM9qKoXk0tYZ4pLs+o98h8+BUrAJWFpaIrQE5WAymShK61WRpaUlbWPRvDqCIPj8ZjENUigUarXuT0zTgYIQ0pKwiq4DUHt/prbvTnBtW3Y+JnJ994r6UpArtA+Z/jWUgk2Dx+NJJBIaBmqO1ysczrxwOBwWiwUFIaStgSpFVBpzocOOHgCAaDDw+F+gkhJdpgOulbm6Lct8+OzaISorcPRsHzLGs9c42w6BDCZNF59tEoVC0dJTgLQKjAkU2DSgIIS0JMoOE7mpuxmSFzjfXeEzm55BkUtrkOQoAADx7BQ+46y5un3070ZKO9Smvf+4b2MZLDo8pkIgEBOBghDSkuBc+6oJtxg1WRphJ3ocbQONCkk9RiaRwvtAJQMsM8SaLnl2pyj1JpXt/cF3UApCIG8KUBBCzIlGXCJLPsGwdrMIGGdkE4LBUdv4N+usXqE0Bahr7RkA38ksUhAAkHH1IJV2DXzHyb+/WbqFQCA0AAUhxGwQaqw4crSmKg8AYDPmG0H/RS09Iz2ghfepNOHa2yx9qpWynHunqKz/6IVm6RYCgdAD9CwDMRvKnHhSCgIA5OmXDVduMQrqBCFw7WWWLnPunlIrpGTawtbZpcsgs3QLgUDoAQpCiNnAih5TaYaVWwvOxBDiQipJmE0QxlBpr4FTEbS5dNsgEEhzAAUhxGyoSlKpNNs5oAVnYgCiy7u1CddeZom+hMlqClPiqGzHfpNN7xMCgdAJvCOEmA2s6AmVZjnRqP/yOhCBs3DHQCApBh3eAeZwWZL36AKurg2maO3iZe3uZ3qfEAiETqAghJgHQqNSl2dQWZZj65UHhFmjD+Y+qLNE7Nh3ghl7hkAg9ACPRiHmQV2eSbzcGDGsXBgWb7azNCMhcE3RkxtUtmPf8S04GQgE0jSaZUdYU1NTXV3t6OjIZjfiWYogiJKSEg6HY2Njo12uUqk0Gg2Xy6WqSSQSgQBG9G69aGvKsB1b6bmo2anITsak1WSaK7Bz6NRDJpcbbgJ5QxGJRDU1NUKhEEEQhUKhVCrd3d3VanVRURGPx2Oz2TiOi8ViW1vb13pTFRcX5+fni0SiwYMH139h5ubmXrp0qbi42MrKavTo0R07dgQAXL9+fdCgQZWVlWKxWLsyi8VycnLSca6NYVhDMywtLcVxnMvlKpVKgiCcnJya+NG8+ZhZECoUil27dnl5eXl4eJw5c8bb23vo0AbjCSQmJsbHx7u4uLx48SIpKWnOnDkDBgwgH2VmZn755Zf+/v729vZyuTw7O3vevHk9e/Y072whZgTLf0SlWS5dW3AmDUIQyN1fkOeXgOcQvO9KgJjhOETbm4yTf3+zXDpCWiepqamXLl06fvx4YWHh2LFju3XrtmTJkpqamiNHjty+ffvmzZs+Pj6jR48ODw/v2vU1vv937949cOBAXFxcenq6tiCsqalZu3ZtRkbG4sWLx40bp1arY2Njo6OjHR0dY2NjBw0alJKScvXq1aNHj5aUlCxdutTa2hrDsBcvXhQXF8+fP3/EiNqIZmKx+MiRI/Hx8Tdu3OjcufOYMWPCwsK6desGAIiLi4uJiblw4cLQoUPDwsJmzJixdu3aqKio0NDQdu3aAQAuX75cUFAwcuRIR0dHjUZz//799PT0lJSUticyzSwIIyMjPTw8xo8fDwAIDAxcs2YNn8/v3VuP2XJ+fn5qauqiRbU21zExMVu2bOHxeMHBwWSJnZ1ddnZ2dna2n5/fZ5991qlTJ/NOFWJelLl19nmc9o38ZGGKnjBqnmMuoQSrWWK16AXJPIfe2AQAAAV3EZuOhN8k0/ssTr1FpZ38B5jeIaTV0r9///79+4vF4v3793/33XcuLi4AAHt7+9WrV9+5c+fmzZtTp05dtmzZ63Y7fvz49u3bx8XFaReKRKLx48f7+/ufO3eO8jQ9e/bse/fuTZgwYfjw4QCAwYMHDx48uKKi4t9//123bh2TWfsyT0pKGj169Pz58zds2AAAsLOzW7169b17927cuBEREbF8+XJqlIiIiIiIiGnTpv3zzz9krKvKysro6GjqJbxmzZq9e/du2bKFXCyO47Nnzy4vL297gtCcd4TV1dVXrlyhdnUIgvTt2/fkyZN6K8fGxubl5VF+5ceMGcNkMk+cOEFVmDFjRlRUVFRU1BdffAGlYCuHUCtUxVRYQYTjHmygMvvFaeuToYJrc63PjEA0SjrmR87r+aW6TE2e6R1KynKLtS4InQOgIGz7kGJJ5/iRzDY54B8lwygWLVpUUVHx008/6cRb6NWr16xZs+oPrU1gYOCAAQN+++23p0+fUoWknNM7Qw8PDyrio4ODAyUF67dCUXTmzJllZWWvs7g3A3PuCB89ekQQhK1tnZaEUChMTU2VyWQWFroeHSUSyc2bNydMmODj4wMAYLFYNjY2bfIjfhvA8hMIjYpMM207oAY1ZXhpu8kYhIzqDGZ5gsqxDx1TJF1sv8QsFoSJx7dpXuoHCZ07Wbl4m94nxAAMaR732V9oTQ49w2msvBQ+s3ELZ3qGo4iLi7t8+fInn3xS/7UJAJg6derPP/9suAdra2sAQElJia+v72sNTTY0gI+Pz717916rzzcCcwrC/Px8FEW1j7l5PJ5arS4uLibveLWZP3/+mDFjvLy8yCyGYSKRKCgoSLtOcnJyUVERQRD9+vUTCoVmnCrEvChzH1DpRs5FVTJWed1toobv3nyzegWlGFSk16YRFDgHGazdONKKguc3/6OygRNWmtghxDCM6kzrc6MRZRWdg3LT/64aexHnN8VNUkpKyq1btwAATCZz5syZlOofSXFx8enTpxEEcXJycnd/5V8BeTBGHa3pEBgYSG4eGgLH8eTkZA8Pj5CQkNed89SpUw1XcHV17d+/DTqUN6cgFIvFHM4roWd4PB4AoKampn5lHo9HSUEAwI0bN9RqdXh4uHbJzJkzu3Xr9uLFi5UrV3755Zeenp56xy0sLDx27Jh2ydixY52dzfY7jslkIghS//iimWAwGEwmk3gZ2Y6G4ci4z6Z0IipOodKCTn0tLS0bqskqvAY0tbsowtqL59DZlHEbBUVRHo+H47im+K6KwMlCpJ2vpa2pX49n50/hmtpI2bbuvl1HfICgDCaTaWDtZodcHW1fFZpXhyCI9paI93gHzVIQAIAqynlpkdKeG3XKU1NTS0pKqGxmZqZOhVu3bh06dGjnzp0AgGPHjg0dOvTcuXPUr/mTJ0/u2bMnMjLS1dU1Jyfn22+/1W775MkTAICHh4f+KaHounXrGpqwSCTavn27ra3trl27mvDH0hHJ9WEymeR9YYuAIAibza5/wGv4m4kYocJmzpe7UqnUmSIpPOSNKZRLpdKoqKhZs2aRukwAAHd390WLFtnZ2QEAPDw8evfu/euvv27btk3vkthstvZ+kSAIUlHYxOVod0gQhBk7NAyDwcBxnLa3G4mJq1Pk1W3yOO5BBnpDC65TaY3LIBo+VRzHcRwncDVVgrQfYPq46dcPU2n/kfMIgBA4Dkz+JF8Lmr+ZgN7V6QzHkObTObThcZ88eWJlZUVlc3JydCrExcUdOXJk48aN1tbWkydP3rx588GDB0ndwMePHy9atOjChQuurq4AAE9Pz0mTJmnrUshkMgCAzg7SMFFRUSiK5uXlHTt2bPDgwadOnWq+YO4tiIEvvInfTHMKQoFAIJfLCYKgxJVGoyHLDbQiCGL79u1jxoyZPLnOSSOfz+fz6/QJPT09T548mZ2dXf+IFQBgb2+vfYFMEIRUKm1U+hoPk8nEMEyppEmtgyAIDMNoe+OwWCylUolhWJN7wGWVqsoXZBphsgmbTgY+fG5F3QW+3L63spmt7jgcjlKpVKvVwKkP2nkckn6asOmoClqoMm3cqvxnFTm1dpMog+kWPIZcMoIgZvziNQqXy1UoFOS/MhqgeXU8Hk+hUFCbQlW7XqyiG4abNAeqdno8s0dERGhrTt67d+/XX3/VrrBo0aLQ0FDyyk0ul9va2hYXF5OP9uzZY2dn16VLF6qyjhU1qWZRU1Nj/LHWzJkzyV3HypUrJ06c+P7775Oi0cjmbxAqlar+l9AaGRIFAAAgAElEQVTwN1PnnFIv5vykhEIhjuPaAoN8vWqLtPrs3bs3JCQkIiKCKlGr1VFRUdoqT+QRa2FhoZ72kJYGK0ii0iwHX8Aw5EVB077WvAnnOWBuI5p3ZtqgDHz8Ps0n2fiHd4CVqReTL+6fptLOXQZxrdqZ2CGkUeRdl6oc+9E8KOY6TOE3rwkNbWxspFLp6tWrf/755+joaHKHQD7KyMhwcHAw0LZPnz4AAO0XoA779u1r6BGPx5s6derFixd17DHIDaLecyZjTg7bPObcEbq5uQEA5HI5tamvqqqysLAgy/USHR0dEBBA/uHJ7IQJE4qLiw8fPiyXyymVJ6lUChrbWUJaCqwgkUqzXRtx46n2m6Vg2jKqM5QeYXQaEdbCNs+IhcnXqLRnH+hWjQ4IpmX1qGhW6X1UXkzPiBoLV3U7Q4ZABti4ceORI0diY2PJjePhw3UH6ZaWljoeYXSYNm3azp07L168SBpk66BQKEQikYHm5I1SUlJSaGgoVUhe7FVXV7/mOt4WzCkIg4KCLC0tCwoKqJ1+Tk5OSEgIuWdXq9XHjx8PCQmhjjdv3Ljh5uZGqjaRf11yz+fk5DRs2LD333+f6vn58+d2dnZ+fq3Xj/PbDFZYtyNkuzZuloC5DgWuDfobav2oFJKyrIdU1qXL4BaczFsGonIwTwjJZqW6unrnzp0bNmygjk9JhcHq6urTp08PGzbs+++/VygU1IZB52KiY8eOS5cu/e2331auXFn/Muj48ePaSoX1IQ+TKf0d0nrNycmpV69e9S0fEhMTX8sPTlvFnEejXC53zpw50dHR5Aa8srLy4cOHM2fOJJ+mp6cfOHCAMpl/9OjRTz/9tGHDhrCwsLCwsIiIiAULFpBH6kwmMyAgIDk5mayZk5MTHx+/cuXKRj2XQloEZUEylWa7dGvBmRhCLQcvLR1NpPjJTVxd25W1m4+lnatZuoW8EZCaLJQnEL2FKIoymUzq7jYzM1OtVsvl8qqqKjabPXv2bC8vrz/++IN8ShAE+VYkz71IPv/883fffffdd99NTU3VHujKlStyuVxb3568G9Oej6+vL5PJpN6fu3fvJhPbtm1LTU29ePEiVbOoqOjAgQMGTCbIKWlPrK2CmF078e7du+np6UKhsLy8fNSoUaRmFACAIIgbN2506dKFvAqOj48vKCjQaRsSEkLZSFy9erWwsFCpVMrl8vDw8Eb1eilIZRmdb6opCAQCOpVluFwuncoyQqFQoVA0WVkGV9Tkb/QCBAEAQFCm29c5CNPQ1bSFhQX51qAHa2triUSC39iC3N4K2HxN2B/A09QN3N39a9Mu1L7F/EbO7z3rO+oRzauzsbGpqamhTVmG5tXZ2tpWVVXZ2tqWl5fTNqgBLl++fOLECVKq2draenl5rV+/XiQS/fTTT5mZmdXV1Ww229vb+/333w8JCbl06dL27duHDRtG6v0FBweT6jOffPKJQCCorq7+9ttvra2tXV1dxWKxnZ3dp59+6u3t/cknn2jrDEZHR+/atcvb23vAgAEajebJkyfdunWbPn06+fT8+fOnTp3KzMzUaDTt2rXz8fFZv349+ejAgQNff/311q1bRSJRcHBwjx49yPK0tLS1a9d26NChd+/e+fn5OTk569evt7e311lpamrqP//8U15eTm4rhUKhp6dnp06dFi9e3NwfsmEsLS1xHK+vF2P4m2ltbd2o8Zv5BWGLAwXha2GiIFTm3CnZE0am2Y5+TsuuG67fAoKwJJvY6Q9I8wmXYM2M8yb2eXR5iKS0Vkt22Op/3HoMpx5BQWhGWpsgbAI4jhtW3dRoNKS5lIFqxcXFBQUFfD7f29vbeEVQmUz2/PlzFxcXbVdfJIWFhUVFRU5OTtQu5U2h+QQhDMwLMQnt6EutNCp90UNAGRGaHHGiujCDkoIok+3kR7ceI+QNolG5pddzqQ5OTk5NcHJtYWGhbaGhjYuLSwsaxbdO2qChCYROVCV1dxitUxASRQlUGjfZxWh+Yp3nbueAAUwufZ5WIBBIMwEFIcQk6oJOAMB21v8LtIXREoSIyYKwIOkylXbrPszE3iAQSGsACkKICRA4VpJG5ViOrdK+pbjOugN3asTM0TBqTF6cFk9loSCEQNoGUBBCmg5WkERgtXfUqIUtQ0h3wBpjQF76kSGE7sDOJB/fpU/v4C/jLgkcPQWOHUydHORNRiwWSyQSKqtSGWufI5PJqMrGt4I0H1BZBtJ0ZGnnqDS306AWnIkBiHH/I658BdRKYtAXJirLFD6uc1sF7ejfWiorK7dv337nzp2goCDSPickJGTChAlkLHE2m52Xl7dt2zZKRnI4nGHDhk2aNAkA8PDhw927d3t7e6vVapVKNWnSpJ07d27ZskUoFCYkJERFRRkeet68eZ06dVqxYgWlFc/j8UhfmtXV1aQJQHBw8McffyyTydatW0e6sPH391+1alX93nAcX7VqFWns7+Hh8dVXX/3vf/9LSEgg9ZAtLCyo6AXe3t6TJk1qe4HpKaAghDQdRVqdKQLPb1RD1RCNgiFK1Vj7EUweLfN6dXQ7b83EA2bpqjBFSxB2hYLwbSQhIWHmzJnvvvvuuXPnKKX82NjYiIiIuLg4UhS5u7v/8ssvt27dmjBhwrRp037++WdSLzQzM3PNmjWnTp0inScTBPHVV18dO3bshx9+AAAkJiZmZWVt2rSpQ4cObDY7MjJyw4YNW7ZsmTVrllwuz8jIWLNmzePHj/38/Hbu3Hnv3r1x48aFhYXt2LGD7BzDsMLCwl27dp0+ffrjjz+2sLD4+eefHz58uHr16jNnzkybNq2+puitW7eeP3/+4MGDp0+fkg4sFy1ahGHYgAEDlEplUlLtnUJVVdW+ffv69u3722+/jR49mqYPml7g0SikiWhEudQFIYIyeZ31e01DZcU20X2tz4y0ie6DyoponKCZkVYWinJrNYMQBHX0a4PhSSGGyc7Ofvfdd6dPn/7VV19pm6aNGDGid+/eOpUdHR0BAO3ataOsI3bs2BEeHk5KQQAAgiBr1qyh7NkrKip+/PHHgIAACwsLJpNJljs6OqIoamlp2b17902bNlVUVJANSddrtra2VOdsNtvT03Pz5s3akfkcHBwmT57M5XK1nZ1SZGRkeHt7c7lcbTfObDbbxsZGuxNra+sVK1YEBQV99NFHRUVv8D9hA0BBCGki0sd1EdQ4nn1QnrXeary031FJPgAAlRZyso/TNLlm4OnFfcTL0L52HQO5Al07ZQgdSEuQkqT6/wG5IT/UQKNESh/raSXKeq3BP/vsMwzDli5dWv/RsmXLtMMI6yUjI0PH0Qefz3/nnXfINI7jnTp1MtC8R48ehr11AwBQFA0JCdH2/mFpaRkWFhYVFaXjo0MkEtW3tTdAYGCgXC6/evWq8U3eIODRKKSJyFJiqDTPf6z+SgTOef4flcMtXWmOFqrOvAwq80HHEcC0U1lcjWVcrbu/6Rw60+SpQV4TjQqJXYU++RfodYbFYOG9lxP9P6v/BMk8j57/BMgr9XfrEqwZ/xfgN377lZ6efu3atVGjRmmHAafgcDj9+jXiXcHFxWX//v3Tpk3Tdhg5Y8YMco8YEBBguDmDwfD3b9BU96efflq5ciUAYNCgQWKxWDsI34wZM/7999/bt28PGDCAKjx//nx4ePjNmzcND0pBinDtcMRtCbgjhDQFXCmhoi8hKMOiS5jeaqyy+6isNmgOwRJgbiNpmh8AAADk7i/yfaOImHnokSn6355Gk3P3pKKm1tEXh2/TcUCE4foQs4Mk/IE+PtTg31GjQm9vRbJidctlZejpjxqUggCAwodo7KfGTODWrVsAAAOxGr777jvDMWDnzZtXXl4+cODARYsWRUVFZWVlAQD69etHtho7toFfk1o0VEehUFCRJfr27avjPrRPnz6dO3c+ePCgThPt80/DYBh28eLFrl27Dh8+vPHabyBQEEKaAsq2YFrXhpnkeoUyBI56q7Fz6naNmPsompVl0IS9ZAIpuAckJt1tZN+pW4j3kOlMdgto/bzloNmXG62D1KuD5MUDVSP+UZGcK4Bo3LVvSUkJAICMkKOXDh0aMafp27dvZGQkj8c7evToihUr+vTpExYWVj/2gPHEx8evWrVq4cKFvXr1Mhy3/L333jt16lRVVRWZTUhI6N7dkE2tQqFISkpKSkq6d+/ewYMHJ0yYMGjQoKNHj7bVEEBQEEKaBIK2m/WvZY+pgr7z7KbsbKASwck9S2WUHvp3jc1F+TMgfvlqYFkAi6YHkVcpJIXJdVcjHftPMXFqkCZAcBu/0CJ49erwbBrvmmNtjF0NGT7QROf7EydOTExMPHHixKeffhocHHznzp0pU6Y02ZSwb9++P/74Y2Rk5MWLFw1f+L333ns4jh8/XntJ//DhQyokhV6kUmlVVVVVVZVcLvf39z98+PCPP/74WneKbxZQEEKaCMvBx27KLptx36OWdvorlNxFpbW/dgkWX+UaqrdaM4Em7qXShGtvwGA1uavc+2c1qtrXn8DR09ajVXqSa+vgwQsAw+B2hGtNdNW9uyXc+gGXRqLM472WGDMBMgqgjtqkWq1es2bNRx991KdPn5CQkNmzZz969MhwPxwOZ8CAAWvWrDl//vyWLVsyMzNPnjxpuEmjODo6khHOSS5f1t0Zt2vXbvjw4eTpqEKh0FYT1QubzR78kh49ejRa/00HKstAmgttHVHMbQTB4NI3tkqKpByickRAg6FHjSHnbt17qkOfCaZ0BWk6LiGa92LQ+7+B6tz6D4l2fkSf5UBYL64QytBMOYLe/QXJu03Ui8yM8Gxw/wgjvx6DBw/m8/m3b9/WLmQymZs3bwYAzJo16+zZs9evXzegO0rps1DMmTPn77//TktLa6iJ8axevZpMYBiWkpIydKiuOdOMGTNmzJiRkpKSkZHRVq/6mgwUhJDmAVezX5yicsqOkw3UNT9VuUD9MmiZ0I3wGd/knhTiSu1zUc8+Te8KYiouIfj4vY1X04EjxAf9n+mDCwSCpUuXfv/99wkJCfXPFcnLMzKsUkMkJCQQBIEgiHahh4dH/dC4TYDS04mPj/fw8KhfYejQoa6urgcPHvT29m7Dh5xNAx6NQpoFduEVVFGrZklwbTHnIbQOb+9DuPYGAAAERULXm3Iu+uLuSc1L/6JWLt7wXPRt5pNPPhk+fPjy5cvLysp0HuXk5OiUkF5mtCOfv3jx4siRI9p1MAx78uRJ/d2bTicNldd/imHY1q1bO3eu9amrVCqpS00GgxEREXHo0CFta0WCIOp3orewbQN3hJBmgfvsLyqtbB/WyO2O2UFQ/N0TIO+W0M1fxnUBanXjTRrg+a1jVLrTAKgm81bDYDD279+/fv36ESNGfPHFF2FhYRwOp7y8fO/evbNmzSorKyN3eyKR6MqVK3fu3AEAXLt2rUOHDt27dyftLu7cuVNWVjZlyhQnJyeJRLJ27doZM2Z4e3tTQ8hkskuXLkmlUlJkRkVFicViCwuLUaNGkZtOtVp96tSphIQEAMCjR4+OHz9O+rhRq9UFBQVHjhzJyMjw8vLCMOzYsWOHDh168eIFiqKjRo1yd3efMWPG8ePHBw0aBAB48uRJQkLCnTt3JBLJjh07fHx8Ro4cefv27bS0tKysLJlMtmvXLl9fXwNCui2BtD3JTxCEVCrV8eBgCgKBAMMwE7XFjIfL5WIYpuMGovkQCoUKhQLDMDP2iUrybI/3BISGzFaNjVXb1x4lWVhYyGSNqLObEdInsrqpgrC6KPPEp/1qbdcQZPJP9wSOngbq07w6Gxubmpoa0kUyDdC8Oltb26qqKltb2/LyctoGNZLs7OyTJ09mZ2fzeDxHR8fJkye7u7tXVVWRxhVisfjRo0csFsvS0hLDMJlM5uLi4u3tfeLEiYkTJz579uz48eOlpaUMBmPs2LGhoa8okSkUirt37wIA+Hw+k8lUqVRSqRQA0K9fPxaLBQDQaDSGreDZbHbfvn1VKtXt27dJb201NTW+vr6ky7eioiJnZ2cAwPPnz/Py8shRampqWCxWnz59kpOTRSKRUChEUbSqqsrCwqJnz57N9im+NpaWljiOy+VynXLD30xra2ttf3h6gYKwcaAgfF0sH23kpfxCptX2QVVjL1CP3ixB+OCf9Y9P7yLTjr59R3/ViHYfFIRmpDULQkiL0HyCEN4RQsyPth293GcO3cMrqhEDnkSMRqPGMq/XuSqGbtUgkLYKFIQQM8OsTGGIc8g0weBgHuPoHB19fIjxmz/6mz9yryEzf2PJfXCWcqvGtrTy7B1u8uwgEEhrBApCiJlh59RZTahc3yFYfNqGRjQYcu1roMEArkFv/gBwk84Mn136i0p3GhDBYNNoBwmBQGgECkKIeSE4L+ou0pTtG/cjbE6eX6oLx8O1AmjTY11UF2YUp9WZTvsMnW3SxCAQSCsGmk9AzAmr+Baj5mWMNwab7nATaXWmDoSPSSeZz28dowIdOPn1s3bzMWlmkDcfUs1Sp5DH43Xo0KFdu6Z7ss3Pz09KShKJRAMHDtRrCK+XvLw8UsNz8ODB2kGdTKe0tNRw9F1vb+9GIy8aT1lZ2YMHD0QiUVBQkK+vr7m6fV3gjhBiTl41HxxLcBp01W9+MIl2FB7Cb5IpneVohZvwGjzNlK4gbQOFQpGRkbFmzZopU6akpqZWV1dXV1dnZGQsX7587NixKSkpTetWKpUmJyevWLEiPT39tVolJiauWLEiMzOzaeM2RGlp6bVr1xYvXjxs2LB9+/aRMSgePXp04cKFLVu2DB8+nAxHZS4UCsWzZ89WrVpFWka2FHBHCDEbqKyYk3eOyio6z6JzdKQ0BahrbWYIKw/COcRwfQNU5qRUF9W+XxhMtnvwKDPMD/KG4+/v7+/vn56enp2dvWjRIqp8+vTpH3zwweTJky9cuNBoJKb6+Pj4rF27dteuXa/VytfXd926dTt3mqoRVp8uXbp06dJFIpE8e/Zs4cKFOru0TZs21d8WvxabN29es2YNlXV3d1++fPn+/ftN6dN04I4Q0giaqrzSfVOKdgyUJh0zXJP79E+gqbVH1Fh5q5waCdhtZmy9AbtWMYfoPgu86tHxtdD2su3SLZRjSeO+FtK6Qep9rxAEmT59ukgk+vvvv5vcLYq+9qsYQZAmtDK+c73ly5YtM3xw2iipqan1C5tvIUYCd4SQRqiM+UyRGQcAqDy+jOsdyrDQ764XUct46XU/6+S+8wBouihqAoSFPT7tFHh8CNj5EN3eN6Ur7TC8HfrCcBOtBawgsebm/zSVOQTR7D4EEJTJtO8kHLiE5ejXaGXS2wafT5+CNM2IxeL09PTg4GCBQNCocboBsrKybty4YcaJmQsoCCGG0EjKFJm1sRcINQZUDfrr4abvR5S1GpsEx0bp1QL3aoRDF/DOJhM7KX+eKC7JJtMMFsc9iFZ9H0hDYPkJxb+Po44caECZ91D25LTToliWgyFVKY1Gs2fPHldX19mzZ1OFubm5e/bscXBwEIlEffr0GTFiBABgz549z58/t7KyWrhw4aFDh0pKShYvXqyjaFNZWRkVFcXn81Uq1ahRozw8PORy+e7du1UqFYIgXC73o48+In2t1Sc7O/vPP/90dHSsrKwcMGDA0KFDMQyLjIwUCAQqlYrD4cyaNQsAEBUVpVQqMQybMGEC6W6tUbKzsx8/fhwcHAwAWL58OVmIYdjRo0dramoUCgWXy503bx4pI8vKyn7//feKiopRo0bZ29tfv36dxWItXrw4Kirqxx9/lMvlO3bsAAB06tRp7NhXtMrT0tJu3rwpFovd3NwiIiIa2pU2B1AQQgwhS4khXlrjsZy7MKxc9FZD1DJeyg4qK/eZSzB5dMyvGdBWk3HrPozFa+MhSd8Uam5F0ikFSQhMJo7/w3b81lcKCSIuLo5MFxcXnzx5skuXLn///bedXW2E6tTU1Pfff//w4cOk8+uwsDCCIEaOHBkaGvrkyZNHjx5xudy5c+d27tzZzs5u6dKl2p3z+fwrV65oNBpSRioUismTJ5OhBAEA33///dq1a7dt21Z/qsnJyXPnzj169KinpyeGYaNGjUJRdPDgwcOHD9+wYUNiYiIV/rdDhw4LFizYsWNHo8GYHj58WFxcXFpaun///qlTa6M2UvGe1q9fHxAQsHDhQgDApk2bpk2bdvjwYRRFraysRo4cuWjRIhaLFRIS4uzsvGTJkvDw8MGDBysUiq+//nr8+PEAAB3V08TERA6HM3/+fJVKNWTIEIVC8cEHHzT6BzIXbUoQ/vrrr2KxGAAwceJENzc3c3WLomhDP8GaA/JXFW0+YMnVNfTjqzTlBJW2CppK/RvQgf00si7oEouPd1/aUE0Gg9HQo+YAQRA2m204Spw2MlGJth2994DJrzXbFlkdbW5paV4d0HrnAgBwact4HK0/LoIgpHNtAIBAIBg1atTx48fv3r07ZswYsnDp0qWhoaFkRHs2mz1jxozNmzePHDnSy8urT58+x44d27Ztm1AoPH/+vHbcCZLbt2+PHj16wYIF5D/JLVu2FBQUTJ8+nXw6e/bsHj16LF++XOf9RhDEkiVLRowY4enpSQ46ffr0LVu2hIaG+vn5ffbZZ6NHj6ZeYu3bt//ss8+MDCvRULwnAEBSUtLDhw9JCT137txu3bolJyd3796dzWaHhIR06tTp7t27P/zwg1Kp9PLyIm087O3tEQTRayVSUFAwadIkAACLxQoKCoqPj9crCJlMZv0voeFvpjE7yzYlCP39/aurqxkMhlAobLKf5foQBKHRaMzYoWEYDIZaraZNEBpYnar0mSL3fm0GQXhdxuv/EDSYZUqdzpsyYJGKKWwo8hGTyTT/J3n7J/BwN7DpCML/0IlR/rp/u/v/blIpJGSaK7Rz7THitWbbLKtrGHJ1tDndpnl1AADt4bje7yiyrtM5OjVu/cLAwEAqHRQU5OLi8t57723evHnu3LlZWVnJyclTpkypqqoiK7Rv3z4tLQ3DMDKOEoIgZEim7t2763QbFRWVkZGxYcMGquTEiRM+Pj7V1dVklsfjWVlZPX78WEcQPn36NC0tbdasWdSgHh4eKSkpGo2GwWAEBQV17dqVDCAFAIiOjv7www+NWXtwcDCpNerj45OYmEgWymQyHMf5fP6BAwfI11RlZWVJSQmZoNoiCNKtWzfyOJc8UzWMdqxjHo/XkEoOjuP1v4SGv5nGvEvblCAkf+OYPfoEQRA4jtP2usFfQs9wBlYnuvYLZVTOad8LEbrorcbNPILKimt7Y/GlvguIhj8r8t1tjom/pOA+4/pGAACQlhE3vsdH/aLz3HhRoRBXZlz7h8oGTvwUYXJea7bmX11j0CkIW2R1VFrQb4Gq+Ik06SigLWAOgvJ7vs8PmdFoxaFDhzo7O2/cuHHWrFnFxcUAgKKiouvX68T2nj17KB0T6gRVh6ioKFdX12PHji1cuJC6uisqKnJwcNDuauvWrUFBQTptyUELCwu1a+7evZvSxpw9e/aGDRvWrFnDZDIJgnhdi/iOHTtSkubixYtdunTh8/kIguzcubO6urpnz56k3YiOyGn06FUbnSmpVCq91fS+rEz/ZrYpQQgxI+rqApmWvYSw/8KGanJTI6m0wnsmrUb0BIHe3qqVM+nXQ86dGCoYvcDR02corXaQEMMgDJZdxG9WI77AJTSdkTIEjgyhk5GVhUJhUVFRVVUVqfzi5eUVHq7ft1FDJ3Xvv//+sGHDysrKli5deuTIEVKGOTg4CASChrqicHBwAAB4e3s3VHPy5MkbNmyIiYnhcrmk5s5rIRAIqF1dcnLy2LFjZTLZmDFjevbsSWq+UHILwzAGg0FeRhg2iiCjM77uTJoJKAgh+pElHSc0tV9ulr0Xz3+M3mqssvtM0UvDIJQp9/uInunVDpjwB5JztS4f8K4pvWXdPEKlvYfMQJn0XQxDjIRp5QqsXBuvRy/Z2dlZWVlBQUF2dnZ2dnb+/v7379/XvuKKjo4eN26cYcMDgUAAANiyZcvgwYMjIyM//vhjAMD48eMPHjyoVqupttnZ2aRDMu22fn5+3t7eDx48eO+996jCY8eOTZw4kZRGPB4vIiJi3759w4YNmzCh6RZBcrk8JSWFyWSePn06MzPz4MGDZDl1KHr+/PmAgIBOnTrpbc5kMnEcJwgCQZDc3NwmT8PsQIN6iH7kaeepNL/PhwDR/1XR9qmGuY/E+WbTUWoUpDoXubaeyhLu/Yj2A5rcmyg3tSzzYW3PCNqx32QTpwdpk1RWVhIEoR0bNj09fe7cufb29r///jtZsnPnzqtXr1JO13Jzc3NyckhJJpFIpFKpzrmfUqlUqVQSiQQAYGNjs2TJkk2bNl28eBEAsGLFCnd39927d5M1FQrFX3/91aVLFzKtVqvJ+PUoiu7cufP8+fNpaWlkzefPnxcWFmrvyWbPnp2QkGCkP0+RSAQA0Il2m5WVNXfuXKFQCAAg491TMZMvXbrUoUOH6urqsrIy8kRULBaTnWgTEBCg0WhevHgBAKBuf3Acl8lk5EJIxGJx/ei7zQqMUN84b2GEelxaXvBDl1rDCQRxXZ2o13ACwWpsjwQgmtqPumb4Ecwl1PBwZoxyjqSfQmPm1ma4Vvisq4RQ1/uw8RHqL3w3uehx7f2Kk1+/Uf8XY7i+XmCEejPS2iLUnz59+r///iPf1wKBgHzdS6VSLpcbEBAwdepUKysrqnJ2dvbOnTttbGwsLS1tbW0/+OADBEG+++677OxsHMdZLFavXr3mzp0LAIiLizty5IhCoWAymSEhIfPnz1+8eDH5+goODv7444/lcvkvv/wikUhsbGwQBJkzZ46Njc21a9f+++8/hULBYDACAwMXL14MAMjMzNy1a5e9vb2FhUW7du1mzJihcww7a9asP/74w7AO/JUrVw4cOECq33O5XFLgEX269gIAACAASURBVAQhEonIwkmTJpFarEePHj1z5kxISAiKogMHDqyoqIiMjJw4cWK/fv02b95MflUEAsGMGTN69uxJ9f/vv/9euXLF29t76NChQUFBCQkJe/fuJSu7urp+/vnn69atIweysbHR0Y9tvgj1UBA2zlsoCKUP/6k4/gmZZrsGOn18SW9bZtkD67OjybSG7yGadK+hjSOFOQWhvALdOxDIygDKwMfvI7xG169jpCDMT7h4aet0Kjv006im2dFDQWhGWpsgfNORSCT79+8nReYbSvMJQng0CtGDLPUMleb5NHi1rrEJwPm1mzB516WNSkHzQvDsNHPi8NE78VlX9UpB43lyrk7fx6XrEOhNBtJmWLVq1e3btwEAx44dIw31IPWByjIQXXB5lSLzGpW1CGgwuC7B5FWNvcDOjtEIO6lcGzkUbRYs2hFdTFKQAQCI8tKKntT5PwyZ9pWJHUIgrQQcxy9evDhixIj09HSVSmWkQ7W3ECgIIbrIU88QL60IWPZeLKcAA5VxbjuF3zxa5gUAAEhxIsi5RngMAs66plRN5smZ37Rj8Np6djVXzxBIy4Ki6OHDh2/duqVUKo00on87gYIQoos0uc6tmkW31hR7oeA+engC0GDg1mbN9DNmkYWVLx5n3aizmvAbOd/0PiGQ1oOfn5+fX+MBNN5y4B0h5BVUJWnajqwsurYaQYirGRdX1bpdxtVI7k3Tu9Rgivg/VlFm+NZuPu1DTLprhEDqQxBETk5OUlJSYWFho5VxHL98+bKRPV+6dIk2rbq2DRSEkFeoubGrzq2aR2/DAWjoBEk5CMrSXmYQwr2/qT0SxPVdC8uyHlEFIdPXI6ix7rkhbxunT59etWpVWFjYsGHDqOgTAAC1Wv3xxx+PHTs2PDx8xowZpGYKiUaj2bt374QJE86dO1daWnrs2LEpU6acOnXKwCg3btyYNWsWaT9gGLFYPHv27Hv37pmyKAgJFISQOhTpl6WJ/1FZ4cAlLTiZV1DL0Vt1rtTwgPeAS+NufA2Tcf3Qi/t1yrHuQSPdug8zsU9IG2bcuHE//vhj9+7dJRLJsmXLKEfYTCbzt99++/TTTx0dHQ8cONCvXz+yXKVSLViw4Nq1awcPHly0aNHw4cOXLl26Z8+ebdu2kc6v9XLixAmlUnnhwoVG53P69GmlUnnixIlGa0IaBQpCSC1YQVLFf4vAy3NClqMvz/e1fRI2E8jTk0BaUpth8oiB60zsUF5V8iDqaypr0z5g0OL/mdgn5G2Aw+Hs3LmzpKRk3bpXvoTdu3cPDAzU9uSyYcOG+Pj4//3vf9qR621sbKKiov744499+/bV7xzDMIlEwuFwjBFv8fHxXbt2jYmJoTkkSJsEKstAAIGra+J+rr62ncBqjVIRlGkbvoVmu0BDMOp8YeAhHwG+sa6Q9UIQ+I3/LVFKawPWMDkWQ1fuhwF43wAIoizrkbSigJ7RBA4edh0C65eHhIQsXbr0559/Hj169Lhx4/S2TU9P37Nnz7JlyywtLXUeubu7jx49euPGjZMmTdJ2RgMAuHr16oQJE9RqdWxsbGVlpYHoDRUVFfb29pMnT16/fv2NGzdCQ1vCeKkNAQXh245KlFfw53TFi1duGqxGfMnx7NtSU6oP0TkM73IVzTxPeAwi+n1qYm+pZyMLU65R2aCpa/kOeiKFQloVaqXs8o/vU27w6ME9aOSQ5XsZTLZO+erVq2NjYz/99NPevXuT4SZ0OHToEI7j/fvrv8keMGBAdHR0TEyMTuzZ2NjYTZs2aTSaM2fOnD17dubMmQ1NLDo6OiwszNnZ+Ztvvjlx4gQUhCbSan7yQ1oCRfatrC19dKXgkOXCgbp+mBiS3LooE/TDYBGjf9UszcDD/wQMk4KkV2QnPTq8ico6+ff3G7XA5PlBmp2UU7/SLAUBAHmPLjyN/bN+OZvN/u2338Ri8apVq/Q2JHVY2rdvr/cpGUdeR89FLpczmUwulztq1CiBQGD4dDQhIaF79+5OTk69evUiLwuNWxBEP1AQvr2oq/LLD8xUa0V3Qy3t7CbvsBr+hU5N3tM/bI73tD45mB9v6m6sZdGolNd3LaKCDnL4NgM//g1pPSfAkIYpfXa3VY0bEBDw6aefnjt37ujRo/WfVlRUAADqn4uSkEFoy8rKtAsvXLhARgrkcDgjR468efMmGW63PgUFBW5ubqRD7UmTJonFYuMtLiB6ga+At5eqs/+HKyVUluc70nn5bcugaTrVmOWPLO9/RSrRcNP/RlQSQA8EjmRdQJ5GIxqs8crGkXR8a3VhBpXtv+BnS1s9UTUgrRBLu5YJQ2jR8LhLly4NDg7+/PPPCwp0ry15PB6oF8aIgrSO0BGTV65cGThwIJmeNGkSjuOnT5/W2/zEiRPjx48n0+PHj2exWFB31ETgHeFbiuzxSdmTun9mwiErrYd9DurFzkZUYsH1jwBeGz4Nt3AimDx6ZojGfookHwAAEJ1GEJMOmt5heVbC49O7qGzndz5oH6I/2jCkFdIlbGnug7OYrIbOQbkCu4AxCxt6ymQyd+7cGRoaunz5cipkIEnnzp0fP36cm5vboUOH+g3z8/PJOlRJTU3Ns2fPNm/eTGZVKhWPxzt+/Pi8eXr8F16/fl071J+zs3NsbKxMJiM3mpAmAAXh24iqPLPyZZQlAADXo6f1sDX1pSAAgB//KUOc8zKHSPpsBQgdJudI+hlSCgIAkKxYoFGaeDWIq7Fbu5fhmlpFc0s7154z1ps4SQidWLt2Dv/uSlrsn/RpjTp6+g6fa3gn6uXl9eWXX3755ZdRUVHathPjxo07fvz43bt3Bw8eXL/V3bt3EQQZO7bOnf2ZM2fWr1/ft2+dhppcLt+/f39eXp67+ytRNrOzs/v167d8+XKqxMfHZ/HixefPn4fBJZoMFIRvI6IzX1KHogiT4zD5Z72WEkxRKif7OJWV+36IudMSnwiToFfqjLQIx24mSkEAQOr530X5T2szCNJv3k/QXuKNg+/g0XPmNy09C13mz59/9uzZzZs3r127liocO3ZsYGDgkSNHVq5cqRMMr7q6+syZM+PGjevatc69+927d99995U4KhMnTvzrr7+io6OXLl2qXX7s2LGpU6dql4wZM4bL5Z44cQIKwiYD7wjfOlTFqYr0uqt15yk/sZ276K1JoHXWe2qbAFnI+uaeGwka9w0Qv/TKyGARo3eY2KFCXJkc8zOV9R40zTXwHRP7hLydlJaW6kSxRlH0119/ZbPZOoV//vmnQqHYtm2bdjlBEJ9//rmrq+tPP/1EFT5//hxBEO0NJQCgT58+Tk5Ox48f1y5UKpX37t3TUUbl8/nDhg27cuVKVVWViat7a4GC8K1DI61TE+V26G/bv8EgShorb2mPL3Ceg8qpf807BwiTt2VGIRchyX9TOSLkY6KdoThQjUMQ8X+sxKS1DrE4ltbB07823AICqc+tW7dWrlx59OjRiIiIyMhI7Uft27f/9ttvdSSZh4fHuXPn4uPjP/vsM1L/Mzs7e/bs2QqF4vTp09bW1gAAsVj87bffhoeHR0dHb9pUZ9WTnp7+zTffiMXix48fL1u27K+//gIAREZGjhgx4tq1a6tWraIUSsVi8Q8//JCSkoJh2IIFC7Zv3y6VSpv5k2iDIMRLD8ttBoIgpFKpQqEwV4cCgQDDMNosdbhcLoZhzedUnsA1ZX9PV2RcYfAdHOZF23UKVigUOj9ymw8LC4uGVOlqUckYO32BWg4AALZemllXgAnqOdbW1veObr+99zOqJGT6+i7jdK0kzUXjqzMrNjY2NTU1Go2GnuFoXp2trW1VVZWtrW15eXnjtZsfkUhUU1PD5XIVCgWKojpXdwAAhULB5XLrN3z48OHNmzfVarWlpeWQIUN8fX2pR2q1uqCggM1mq1QqgiA8PGodO0ilUnLVPB5PLpczGAw3N7f8/HyCIFAUVavVTk5OHA6H6oGqCQBwc3NjMNqm73hLS0scx8llamP4m2ltba1zOl0fKAgbp40JQhJ1dQGT3w4w2EKhsHUJQgCQ9NPIrS2AZ4uP/BHYdDJlOA6i3jfPl9oO2nfqMfrr0/UdhZgLKAjNSGsThJAWp/kEIVSWeUthWrWMVZYxEJ3HEZ31u3B8XeKjNlBSkG1pNeSTP5tPCkIgkDcUeEf4FoO3Gqf1BA5EWUBj5j137oNzyWfrrLsCJ67i2+seZ0EgEAjcEb51MERpvLTd7MKrqKxY2TECjP6rhSekqEKPTEZKkoHQFZ92ihCaR1YVPb5+/bdFVJBhgWMH3xEfmqVnCATSxoA7wrcIRKPg3/nM5tQQbsZBVFoICJyTdRgtiGu8ZfOhqEaPTUdKkgEAoKYAJP3dWIPGUUpE8XtXX9z8rlpRqz6HMlkDF+2Eh6IQCEQvcEf4VoAoRdyMg7xne1FJns4jAm0x8YA8PozGbQAyLdfDfGcT+3x+6+i9qK8U1a+4M+71/iaHzr1M7BkCgbRVoCBs4zDLE7hP93JyohGNrhotweTJ/T9muvQH5tOwNR4k7zZ6bskr83HrQ3RrMABbo9QUP7+z77PClFc3uAjS54NNvsPnNLlbCATS5jG/IMQw7OnTp0ql0s/Pj8/nG65cU1OTnp7OZrP9/f11NFwJgsjMzKysrPT09HR0dDT7PNsyuJpZk8EquMJ5foxZmVL/uUbYURr8NeY6DDDYQvqnR1L2SnRDwrU3PukfwGjK9rTkaXzisa1FqTfBq7ZAQudOoQu3t/MbqFa3GrUgCATS+jCzIMzIyNi/f//MmTPt7Oz27dsXEBDwzjsN+rK6ePFiUlLStGnTampqtm7dOmXKFG9vb/JRdXX1tm3bRo8e7eXlFRcXV1NTM3fuXESfV2iIFgRTlMZ5/h83/W8E0++kn2BwFZ3flwV9QTD1R0qjDcJ7DIj/CcjKAMsS77mI6LPceIeiiuoyubhCXllU/DQ+P/FSZY6usGewON0mrOgSttTO3kEioStuFAQCeTMxpyDEMOyHH35Yt25dp06dAACLFi1asGBB+/btvby86lfOzc3dv3//vn37WCyWq6urQCD44osvdu/eTbpmiIyMDAkJ6devHwAgIiLihx9+OHXqVHh4uBln20bA1azSO+yiOEZFCrM8AcgrUQQAfT8YNPz2is6zFN4zCa4tzXNEqrLBs5NI3m3g2hu889KbtsBF8+FtpOgRcAokeHYGmhO4piI7ufLF44qc5JJndyUlOWpM16JWG5eug/vO3Spw1BP+BgKBQOpjTkH48OFDtVpNSkEAAJPJ7Nq168WLF/UKwtjY2G7durFYtW6d3dzcmEzm/fv3Bw4cWF1dfevWrZkz666LgoODY2JioCAEAKDyUkbVU0Z1BiorZkhesAuvEooqiRyUSYBEChQqwGEBLzfAodxlIwzMJVTh9yHm8o7eEBPNiKQYSdiLZF1AqFPQ7CsaG1fg+9LLPtea6KD/wIDANVWFGSVp8YUpV4tTbxkZha6dd0+/EXM79pusN6QUBAKB6MWcgvDRo0dC4StXTpaWlvfu3dNb+eHDh4GBgdolfD7/4cOHAwcOTEhIIAhCuytLS8sXL16Ul5fb29s3Og11TXFh9P9p1C/9TnGtAbOeA0BlDVBpueQxWKeKxcIJXMMU1NVp548KXAAAQFqKKOs8vhOWToCjc+lGMArjUUk+AggAgFohUXPaaWx8gQ4KEYKJySSTwdRwbHAmjyHOYeedR5UioJHjGpxQKYBajuMEIIAaBxoNUOEAUwFMBbRvxsQYUOWBdg6WOL+jxrm3yn0YzrUHGADU+eGrc5a366RCuSqV6pX56KyLZw94r+4jCQJUPAOYDFFJgLIKYDLAdyLaDwKU32EcQ6PnAEmJzkIZz+6oOL4AAI1KKa8qVSkkKoVUrZBismqVXCytKFRKRApxhbQsT6M21usbgjLcAod2Hb/coXNPI5tA3iD0OvCEvIUwmcxmcgZpTkFYVFRE+oGl4PF4paWlBEHUv94rLi7u3bu3dgmXyy0pKSEfkW21H5HlxgjCyqQTJw/+2dRFtBUypACkAJACwB8tPZVXeRYFDkeZ2AeLJ7C0dWbxBLYeXRx9+zr597ewcTLL7CCtDblc3qijSLPAZDLpVKricDi0uS8GbWV1Go1G9ye7mTDnN0wsFgsErwQ75fF4BEFIJBKdcrlcrlardX7o8Xi8srIysh8Gg6H97SeFYk2N/vOxrKysPXv2UNmOqgSTlwJpXfCE9q5dB9m293f27e3gHcwVGHvNyWAwSEe9zTo9CiaTSafjfxRFLS0tafObT/PqEATh8/m0rQ5BEDrV8cgAhG14dc00nPYGicLwN1MnPJZezCkI1Wq1zt+VnFz9zSz520Tn9cRgMEhpT/ajvY8k+2not4CTk9Pw4cOpobnZ8jspsaYvB9KyWNg42XcMdAkY4Bb4jp1HF+1rP+OPR8izFNoEIXiduZkOi8VSqVRtdXVsNhvDMDrD49C8Ojp3hIDe1XE4HDqHAwZXZ8yJgjkFoVAo1ImFQYoune0gAIDP56MoqhNNQ61Wk3aHQqEQx3EMw6iDVlJw1u+HxNLScujQoVS24l5p6sm6pwiC6KpOEAQBCO2Ltdetg6AMho0nIAggLQa4VhAcBhsIXAGjLrA7oqgEkiLSvg3HCQ1OEAABDPYrwxE40Lwq4xEEoCyAIJRhHAIAwFUAEGQSQRCAMhELO4TFA0wugjIAAACTNjqf+nUQJgcIXAmU2XAdBDA5QOAMtALWA7UCSEsRXE0gKEAZAGUCJhdwrfVrrGqBoij54kaZLJ5VO7aFkMmxZPH4LJ6QxbW0sHHiCu04fFsLW2e2Rd1tq7Kp/6h4PJ5KpaLtUIjBYND5drOwsMAwjLYwTDSvztLSks4fMTSvjs/n0ynmaV6dQCCgczjDq9O7idTBnILQyspKJBJpl2AYxuVy2WxdK2kEQQQCgY4gxDCMVJAh/y+TyShBSEp7KysrY6Zh23Pa9EPhMB6hkbTCeIQQCARCJ+bUp+/QoYOObBOJRAEBAXord+zYsaHKHTt2BABoSzKRSGRpaUmFb4ZAIBAIxFyYUxAOGjSopqamqqpO7T4jI6N///5kuqCgYNu2bXl5tU6fhwwZkp2dTdUUi8WlpaV9+/YFAPj5+Tk5OWk/zcjI6NOnDz3KYxAIBAJ5qzCnIHR2dp42bVpUVBR58B0XF2dlZUXd3iUlJcXFxaWk1FqzhYaGOjg4XLlyBQBAEERUVFRERISbmxsAAEXRJUuWREdHk1vGvLy85OTkDz74wIxThUAgEAiEBDH7be2jR48yMzNZLBabzR4xYgTlOwbH8YyMjM6dO1O6oBqN5tKlSzKZTKVSeXh46JgV5ubm3rlzh8vlKpXK4cOHW1tbGzkBgiCkUim8IzSStn1HaG1tLZFIaFOWoXl1NjY2NTU1tCnL0Lw6W1vbqqoq2v4h0Lw6Ozu7yspK2pRlaF6dvb19eXk5bcMZXp21tXWjp4nmP2wMCgoKCgqqX46iqI+Pj3YJg8EYOXJkQ/20b9++ffv2Zp8eBAKBQCDatM1bNwRBzGj5q1arzdthqxpOpVKhKErncHQaZbft1WEYZoyxsLlokdXRZgZO/+oYDAZtO8IWWR1tw5lhdUSbAzc33377bWxsrNm7bYgvv/wyLi6OtuFWr159584d2oZbunRpYmIibcMtWLAgLS2NtuFmzZr1/Plz2oabNm1afn4+bcNFREQUFxfTNtzkyZPLyspoG27cuHHV1dW0DTdixAi5XE7bcKGhoWq1mp6x1Gp1aGgoPWPhOC6TyUaOHGmggjFSow3uCM3+ExLDMJVKRdsv07Y9nEqlwjCsrQ5H84epVCrJ8wN6hqN/dW34wySlIG3DSaVS0AzvRr0QBCGTyWhbGo7jcrncxOHojcsDMQIURek876IZOk996adt/+3a9upI558tPYvmgsFgtNXA5mZ5pbTBHeGbzrJly+zsDAWqfaNZt26dk1ObjRTx3XffkSZAbZLt27c7Ozu39Cyai99//9141fQ3jkOHDrVVMW9hYbFv3z4TO4GCsNXRht81AIA2LCcAAG1bz7ltu3aCq3tzMX11jPXr15tjJm0ZgiC8vLxsbGxaeiLNgkajCQgIaMih+ZuOWq3u3r27MV5330Q0Gk1wcDBlqtvG0Gg0ISEhbdWfFEEQISEhbfK4kjxk1mtE12oxv0E9BAKBQCBvEG3z1BgCgUAgECOBghACgUAgbzVQEEIgEAjkrQYKQggE8sbQtnUa2vbqWjNtUyPLMHfv3k1NTRWJRACAd955p3v37tQjlUoVHR3NZDJxHGexWGPGjNFWWrt9+/azZ8/IhsOHD+/atSv1CMOw6OhoFoul0Wh4PN7IkSNbStvtwYMHycnJpLOoIUOGBAcHU4/UanVMTAx4qdY1ZswYNptNPTXwsURGRtra2np6ejKZzNLS0vT09KVLl9Kv8EYQxKVLl/Lz88vLy7lc7pgxYzp16kQ9FYvFMTExQqFQLpe3a9cuNDRUO87JtWvXSkpKUBQtLi4ePXq0tv/3mpqamJgYa2trqVTq7Ow8aNCgltLlu3z5cl5eXllZGYfDGTVqVOfOnalHUqk0Ojqaz+crlUpbW9uhQ4dSk8RxPC4urrCwkMFgFBcXjxw50s/Pj2q4efNmX19fV1dXBEEKCgoqKirmzJlD98IAwHH8zJkzZWVlZWVlQqEwPDzc1dWVelpRUXH69Gk7O7vq6movLy+dQDQU8fHxaWlpc+fOpUrKy8vPnDljZ2dXVVXl4+PTs2fPZl+JPgiCOHv2bGlpaWlpqUAgCAsLc3d3p56KRKJTp07Z2NhIJJL27dtTIVp1ePDgwcOHDz/66CMyq9FoNm7cGBIS4uTkhON4bm6uRqOZOnUqHet5FfLlVlNTU1FR0a5duwkTJtja2lJP8/LyLl265ODgUFFRERIS4u/vTz0iQ/J17tyZw+GUlZU9efJk4cKFXC6XfPrixYsrV66QDXv37q0TkoFumsnhZ6vl7NmzN2/eJNN37twJDw8/efIk9fSbb765fPkymb5x48bXX39Nuao7efLknTt3qEdhYWHnzp0jsziOf/XVV9evXyezV65c2bhxo5E+7sxLbGzstWvXyPSDBw/Gjx9/7Ngx6ukPP/xAzfnevXtffPEFNcn6H0tMTAzVcMWKFeNesnLlytzcXDoWU4+oqKjU1FQyHR0dPWHCBOovolKpli1b9uTJEzL733//RUZGUg337duXnZ1Npu/duxceHn7v3j0yq1QqlyxZ8vTpUzL7zz///Pnnn82/FD38+++/ycnJZPrMmTPjx4+/ceMGmVWr1StXrkxMTCSz0dHRO3bsoBr+/fffmZmZZDoxMTEsLOzWrVvU0/fee4/6261fv76iooKOxdTj9/9v70zDmki2h18hkUAggKxGRGQTeEQBFdAZvXd0uC4g4jqO67iLgnMHtxm9zCii4jKCjjiMoqKyiAjI5oIsIoLiEtkEgrIZdgWykD2d5P1Qz/TTbwLo6DW586d/n1LVfTp1urq7qk6dqnP+fHNzs0KhkMvlly5dWrx4MVqVPB5v69atb968gclz585dv35d9QpcLnfVqlXnzp3D5mzdurW1tRUmo6Ki0tLSPq8aA3Dx4sWGhgb4Oy4ubtGiRRUVFTApEAgCAwPRo7GxsbB5UILP569duzYqKgrNEYvFaMX5+fkdP36cx+N9Zj36QSqVnj59+t27d/D30aNHV61a1d7eDo+2tbUFBgbCeFIymSwsLOzBgweobFhYGKrC1q1b6+rq0ENMJjMoKIjNZisUCgRB9u/fj31o1c/QMo2KRKKSkpJx48bBpJeX15QpU2JjYzkcDgCgvLy8vr5+xowZ8Oi0adM6OjqePXsGAODxeM+ePXNyckIPTZ48+cKFC3AHv+fPn7e0tEybNg0e/eqrrxoaGsrLy9WsnUQiuX//PjpOnTRp0rRp0+Li4np7ewEANTU1FRUV//rXv+BRDw8PNptdUlICABCJRMXFxUq35fLly/C2AABsbGwiIiJCQkLOnDlz8uRJbG9XbbS2tra2to4ZMwYm58+fP2rUqN9//10ulwMAcnNzyWQy2hv18/PLy8traWkBACAIkpmZ+fvvv8NDcHnT7du3YfLu3bsGBgZob3TBggW3bt3q6OhQn2IAAAA6Ozvr6+ttbW1hEg52o6OjYSTFwsJCmUzm6uoKj/r6+paUlDQ2NgIAFApFZmbmb7/9Bg9NmDBh2LBht27dQq/s5eV14sSJkJCQ8+fP79+/H9uXVxuVlZVSqXTkyJEAAAKBsHr1aj09vejoaHg0PT0dG3NtyZIl165dQ589lMzMTKWdX1JTU+3s7NCR5dKlS+Pi4ng83udVRgUGg9HX14fuFLF8+XIjIyNUu6ysLHNzc7RmFy9enJqaqhqrLysrS3Vfm1mzZoWHh//yyy8XL17cvXu3np7e59Sjf/Lz82k0GtzrikQiBQQE8Hi8y5cvw6MJCQkeHh5wjbWWltaiRYtiYmLkf4aQNDY2Pn36dEhISGRk5NmzZ7EWjvj4+KlTpxoaGgIAiETiwoULY2JiFJqzDA+thpDJZFZUVFy6dAnNGTt2rFQqra+vBwCUlpaOHj0aaxaj0WhPnjwBALx586asrOzKlStYQbFY3NDQAAB4/PjxmDFjUEECgYAKqpP29vaqqqrz58+jOY6OjgiCvHr1CvypHXZTPhqN9vTpUwBAS0tLZWXlxYsXsYLobQEADBs2zMHBwcvLC22H1E9jY2NxcXF6ejpMEggER0fH3t7erq4uAEBpaamNjQ16MplMHj58OKwCEok0b968r776Ch6SSqVyuRy1zzx+/BgrqKura2BgAG+LOmlqaiotLU1JSUFzHB0duVxuW1ubaiFJJJKpqWlpaSkAgEAg+Pn5/fOf/4SHZDKZVCrFbiCgo6Pj5OTk5eWlwR2LGhsbb+D4kwAAGddJREFU79y5k5+fD5MkEsnOzq6pqQlGz1aqO2NjYxKJRKfTsVeg0+murq5kMhmbqSRobm6uUCjKyso+oyb90djYmJeXl5OTA5NEItHe3r61tbWvr0+1kFQqVUdH5/nz59grVFZWjh07VnXbBz09PRcXFw8PDzMzs8+sxIA0NjZevXq1srISJg0NDS0sLBgMBgAAQRA6nY7Vjkajsdnsuro6mNTS0rK1tfXy8rK3t8d+VyUSiapgd3c3/JxqhKHVEI4ZM8bf39/b2xvNgXHn4b4qtbW16PcRoqurW1tbCwCws7Pz8/ObOXMmegiGdIeCDAZjIEF1MmrUqAULFmBjHUPt9PX1QX/aUSgUWEhra2t/f390sKgkiCIUCjs7OzXVa3N1dfXx8Zk6dSqaA6sA1U7pK0mhUODrCgBYv369j48P/P3ixQvYeAAAFAoFg8EYRFBtuLi4+Pr6YmePsE+m6gOGLeSaNWsWLVoEf8NmAGqHpa+v7+3bt5+t+O9h6tSpPj4+2FlnsVisra1NJpOFQmFzc/Mg2gEABAJBU1OTi4sL9hzYS1B979Rfd56enj4+PtiNVCQSCYlE0tXVhb3JwbUTi8UMBsPd3X2g63M4HGjU0Qje3t5+fn7oiBYAIJFI4EvHZDL5fD5WO9iWK1WBWCzu6OiQyWRoTlNTk1gsVhVU/zcTZWg5y2hra2/cuBGb8+LFCwsLC3t7ewAAl8tV2itSV1eXy+UCAHR0dDZv3ow9RKfTLS0t4QiJw+GovpBQUJ2QSKQNGzZgc+h0uomJCbTocjgcJbOYjo4ONED1e1vMzc3hbQEACASCjIwMY2NjIpF45syZFStWoHZUtWFoaLh161Y0KZPJysvLJ0yYQKVSpVKpUChUrQIl8xqPx6urq7t+/fpPP/0EjagCgQBBkPcKqgEqlRoQEIAm4cjGycnJ2NhYoVD09fUpFRKtOxQ+n//q1auEhIRdu3ahRlQAQHd3982bN0eMGCEWi0+dOrVt2zb1b/dqYWGBrTs+n89gMKZOnUogEKAWSn0RMpmM1S47O1u1af8QQfVgamqK1U4kElVXV3t6epJIJDh5plp32I9DZmYm2ktToqWlJSMjg0ajsVis4uLiH374Qf3b8Ts4ODg4OGCL9O7du2+//Rb8WQVY7chkMoFAQLWTSqVZWVlUKhVawufNm+fp6dmvIGwI1f/NRBlaDaESdDq9oaHhyJEjcF92Pp+vtG2jjo4OtG8oUVpa2traGh4eDsf7AoHgAwXVSWVlJYPBCA0Nhf6rAoEA6yMKAID9cQRBlBxc6XR6fX394cOHUTuqjY2Nr68vPI1CoYSFhZ07dw7a9zXF7du3EQQJCgoCf8ZaU6oCMpkMPWAhcB6UzWbTaDR0UDuQoAZfSMi9e/cEAsHBgwcBAAKBAPowY08gk8nYyTCJRAK1U43s4eTktHDhQvhbJBIdPHjw7Nmzmt2eNCUlxdDQcNOmTQAAgUAAVKpAV1cX1a6qqsre3l7VbPheQU1x8+ZNXV1d6PzZ7wOG/TjU1dWNHj1ayfQCIRKJ48eP9/f3h8nu7u7w8PATJ05odnvSxMREBweHpUuXgv60IxAI2NfH1tZ25syZsO5GjBjx/fffR0VFWVpaQkHsZ4dEIpFIJA1+M4eWaRQLm82Ojo7eu3cv6mtOJpOhPQpFJpMpNR4AgN7e3piYmH379qFzvx8oqE76+vqioqJ27949YcIEmKNaSLFYTCQSlUJ5cTicP/74Y+/evVg36IULF6JP7fjx46E79WfWYDCYTGZaWlpoaCic94LDAmgpRRGLxdjhgo6Ozpw5c7799tvVq1cfP348NTV1IEG5XK40zlAzbW1tSUlJBw4cgEM32MtWrTvsA6atrT179uxly5atX78+MjLy2rVr6KElS5agv93d3Ts6Ou7fv//5lRiQly9fFhUVHTp0CHak+q0C9PURi8W1tbX9bt88uKCmqKury83NPXToELS+wEIO9HGQSqVlZWUDrRUhEomoxRsAMHHixLq6OqWpUzVTUFDQ1tZ24MABWP5+tcO+Pr6+vmgPxsrKysjIKDk5GQxcdxp874ZoQygWiyMjI7dv3w6H6hC4BA17GoIgSp01kUgUGRm5Y8cO7Pq8fgU1GM9BIpFERERs2bLliy++QDNVCykUCvX19bEdTLFYHBERERQUhL0tfD4fumxAiESivr4+6kejflgsVnR09IEDB1CLja6urra2tpJ2AoGg3462paWlg4NDfHw8h8OhUqkEAgGOLVBUK12dcLncqKion3/+GXVRJpFIFApFte76fcDMzc2dnZ2vX78O/RLZbDZ2ahC2PRqsu/b29oSEhPDwcOhBCgAwMDAAfw7vUNAqyMrKmjt3br+XGlxQI3R1dcXGxh4+fBh1q4aFVKo7mUz2Xu0AAN3d3dipQXgpDdZdTU3NgwcPjhw5AksC3lcFEomkubkZe8jQ0BCWHz6HWEGZTKZQKDRYd0PRNCqTyc6dO7d27VrotvTu3TuJRGJpaWlmZqb0yPJ4PPSNBQAgCPLHH39s3rwZPuhdXV1yuZxGo5mamg4uqE7kcnlMTMyKFStgO9Hb2wuX8ZqammJNhQAAoVCILSS8Ld999x2cGO/u7haLxZaWlhEREWVlZUlJSWhfWyqVSqVSNer0/5X5woULO3fuNDU1BQA0NjaamZlRqVQTExOlF1IoFMIhe3l5+ZUrV9atW4cOjk1MTOrq6pqbm11dXU1MTJTqrq+vDzspok5EItH58+eDg4PNzc0BAM3NzUZGRkZGRqoPmFAohJsJvHz58tKlS6tWrUKHTcbGxjKZrKmpydTUdN++fQiCoI7EsNY0VXcsFishIWHfvn2wCX/58qWTk5O+vr6Ojs5Ar09XV9fVq1fRfCaTKRKJzp49O2XKFFdXV9XejwbfOy6Xe/Xq1b1798KvfG1tra2trY6ODpVKVXoy+/r6YDf67du38fHxaH5jYyObzT579qyHh4enp2dQUJC1tfWxY8fgUbiQRlN1x2Qy8/LyQkJCoCG0vLzczc0N+rJiq4DP58vlclgFMTExOTk5ly5dgq8qwHw3YA5WEBq0NVV3YAg2hAqFIjEx0d/fH43l+OzZM/iJdHNzu3fvHvbkzs5O1O1eoVAkJSV98803aG2VlpZOmTIFAODu7l5cXKwkONAE+Ofmxo0bvr6+6DqHFy9ewIbN3d09LS0NeyaLxUJ34uj3tkA/PWNj45UrV6KtIJ/P5/P56neWAQAgCBIfH79hwwbU6+fBgwcrV64EALi7u2PXZsnlci6XCz83tbW19fX1TU1NaEMI5+phY+Pu7o51r0AQpKenBzvcVxtyuTwpKWnt2rXoh+Phw4fQsOnm5vbmzRv0TIVCwWazYSEZDMbr16/r6+vRhhCqY2FhAQAYNWoU1vL27t07AICS+6V6EAqFN27cCAwMpFAoMOfx48ewJK6urtgqEAgEaN0FBgZiLwJfVdRtbfz48VjBvr4+gUCgkbqTSCRJSUkBAQHoML24uBiO6d3c3LBTzhKJBK07rHsUAKCiomLcuHGoynZ2dvPmzUOPwpG9Ruqup6cnLy9v27Zt6PzIs2fP3NzcjI2NR48ejdWuq6uLQCBAD1gDA4NFixah3j1yubynpwfaqCwsLGg0GrbuOjs7iUQi1q9YzQy5hjAhIaGsrKy9vR0muVxue3v7rFmzAADe3t43b95saWmBA76Ojo6enp6vv/4annn58uXq6mrUSMjhcLq6uubPnw8AmD17dmZmZkdHB5yyamlp4fF46MJ8dZKcnPz48WPUIsHlcltbW2NiYgAAM2bMSElJaWxshO3iu3fvOjo6oOIAgMTERNXbAhdUeHt7o/kAgPv375uami5YsECNagEAgEKhOHXqFIvFgurApk4kEsENw/z9/X/88ce+vj74JaqoqDA2Np48eTIAYMqUKa2trbCmAAA9PT2vX7+eO3curKyFCxeGhITw+Xy4WvnFixc0Gk39L6RCoThz5kxnZydcFgm14/F4q1evBgDMnz9/x44dHA4Hjjaqq6spFArshHl5edXX1y9evBheh8PhMBiMr7/+Gvo/T58+HRtQOj8/397eHl10qDYQBDly5Ah0OQYAyGQyLpeLOg0uXbr0+PHjEokEdrYeP348btw41UG5QqGQSCRw6SFkyZIlv/3227p16+AwpaSkxM3NDbs6TT3IZLKjR4/KZDK4aYNcLudwOCQSCU46LF68+NChQyKRCOr75MkTOzs71X6kQqEQi8VY7b788kvsCKmgoGDSpEnqfzJ5PB6cjD958iQAQCqVcrlctLu8bNmy7OzsBQsWQGUfPXo0c+ZM+JR6e3s/ffoUnXkpLS3V0tJatmwZKpifnz9v3jxUcNasWRrZMQAytCLUt7e3wzXLvD+RSqWjR4+GnwZtbe0JEybEx8eTSKS2traUlJTAwED4LDKZTLjlGCqIIMiYMWPgbjJkMtnFxSU+Pl5bWxv6cWzfvh12ydXJ27dvr127RiAQsNqNHDkSLn8cNmyYq6trQkKClpZWR0dHcnJyQEAA2uTfuHFD6bZYWVnB22JqatrQ0FBYWMjhcB48eFBdXb1v3z71b1BSVVVVVFQklUphCfl8PoIgzs7OsHNNpVKtra2TkpLgSrL8/PwdO3bAOYzhw4fr6ellZWV1dXU1NTVduHBh6tSpGzZsgF5ChoaGlpaWycnJFAoFzoIEBwerf34XlhlBEKx26OaZenp6dnZ2iYmJurq6r1+/vnv3bnBwMGzhDA0NjYyMMjMzOzs737x5ExMTM2nSpC1btkDtrK2ti4qK6HQ6i8W6ffs2h8PZs2ePqgfm5+bRo0cVFRVisRhqJxAIZDKZu7s7HN+YmpoaGhqmp6dTKJTy8nI6nR4cHKy05CAjIyMtLY1KpYrF4qdPnxoaGpqbm5ubm1MolMzMTAqF8uLFi4qKih9++EH9DhdPnz59/vw5qh2fz4fbAEELhLGxsZmZWWpqqp6eXmVl5aNHj3bs2IEOiyHZ2dlpaWkUCkUikTx79kxfX3/EiBF2dnbZ2dm1tbXd3d1paWm6urr//ve/1b+D8a1bt1paWvh8PtROKBTK5fIvvvgC9qetra05HE5RURGZTC4uLm5vb0cHjtAmfOvWLQ6H8+TJk4cPH+7ZswddumNra9vd3f3o0aNhw4YVFRV1d3ejD61GwCPU9wMcANFotL/kqaxQKNrb27W0tEaMGKFZF+fB6ejogFObcNHIByKTydrb2/X09DSyR9cHIpfL29rayGQyNHsq0dvbC7fVVv2aDC74P4JCoWhraxs2bJi5ubnqA8ZisXg8Xr/aSaXStrY2ExMTDTpwvRcEQdra2vT19f/qUjmpVNre3k6lUv+Xn0wEQdrb2ykUCmr3/kDganQzMzMNjpbei0gk6uzsHD58uOqSKvhV1NbW7ndzHChobGyMOuBoCrwhxMHBwcEZ0gzR5RM4ODg4ODgQvCHEwcHBwRnS4A0hDg4ODs6QBm8IcXBwcHCGNHhDiIPzN4PD4WCjTv6fobi4GMbBxsFRM0NuQT0Ozodz7NgxGAgei6GhobOzs7+/v0b89cVicVBQ0K+//qr+v1bl8OHDZWVlcrlcadMiCIPBCA8P7+npWbly5fLly997tWnTpgUFBenp6WE3fMfBUQcKHBycAYCBVS0sLKytrdlsNsxpbm4+ceKElZVVQkLCX7paQ0PDpxfpwIEDeXl5n36dj0NJBRaL9Z///MfMzKzfkxEEaWxstLS0PHbs2Adev6+vb8GCBVKp9FMLioPzV8BNozg4A0Iikezs7MzNzY2NjeFiYRKJZG1tvWvXrtTU1M2bNyckJHz41SIiIj6xPPX19YWFhei2f2qmt7f3ypUr2BwjIyNsEGAliESijY2NpaXlh/+Fvr7+9OnTo6KiPr6UODh/HbwhxMH5GDw8PAIDAwMCArAbsQ6CUChkMBif+KeRkZEwnq1GKCsrU8O/bNy4MSoqCgZbwMFRD3hDiIPzkSxZsoTH4509exabCcMLqJ4cGho6UOB7uNGUTCYb/O/kcvn169f/K8NBiUTS1dX1l2L6CASCn3/++dP/+r0YGBiMGDFCKZwLDs5nBXeWwcH5SGCgg5ycnMOHDwMAhELhr7/+Onz4cAqFkp6evmXLFl9fXwAAl8v96aef0tPTEQTZsmULAGDevHl+fn4AAIFAEBwcrK+vP3HixMzMTB8fn++++26gv6uoqDAxMcFu5p6TkxMSEvLq1avs7OyKigq5XN7c3NzV1XXhwoXc3NympiaxWFxQUHD69GlHR0coIhQKQ0JC9PX1x40bV1NTIxaLQ0NDtbW1Ozs7V69eXVFRsW3btokTJzY2Nkql0oKCglOnTjk6OpaXl4eFhcGNszs7OwEAP/74I9x2GdLc3JycnEwmkx8+fDh//vw1a9aolr+mpubgwYM9PT1yufybb77ZsmULn8/39/cnEAjGxsbXr19Hz/zyyy8LCgrQCGg4OJ8dTU9S4uD8rzN+/Hh3d3fVfLlcTiaTTUxMYDI0NPQf//gHdPRoaWnR1dWl0+noySEhIR4eHkriPj4+e/fuhUk+n29hYVFVVTVQMa5evTpnzhylTIFAQCQS165d29nZCXNcXFyWLVuWm5sLk8HBwbNmzYK/ZTLZnDlzzp07h4ofPXp08eLFcrkcJmfMmDFnzpy7d+/C5K5du1BZhUIxefLkX375RakAycnJRkZG4eHh8CJ0Op1EIqGFUSgUnp6eqLOMXC6fOXPmwoUL0aP37t37/vvv0QJAoqOjFy1aNNB9wMH5r4ObRnFwPhL4CqGBIKysrEQikVwuBwCMGjXKzs7u9u3bg4jn5ubevn0bht4FAFAolBkzZsBoi/3S1tZmZGSklKmrq6utrW1lZYWOFG1sbN68eePt7Y1Nwt8pKSn5+fkwlDFk48aNqampd+7cgUkjI6Pe3t7Zs2ejsmhsy0Fgs9lLliyB98HW1hZBkNbW1n7PJBAI27dvv3v3bm9vL8ypra3dv3+/UjCN4cOHf+DMKw7OfwXcNIqD85G8fftWIpGgkWDXrVu3bt265ubmhw8fcjgcPp+PjbOqSn5+PgCgpKTk+fPnMIfFYgmFwoHOFwgEqmFuIPb29uhvEomETRKJRIFAAH9nZ2crBfQxMTExNDTMysry8fFRvRSRSOTz+YOoANHS0kLNpDCkHI/HG+hkPz8/c3Pz2NjYnTt3whi2qssxjYyMBrkCDs5/HbwhxMH5SF69egUAQJuQhoaGTZs2ubu779q1i0ajxcfHDyQI45ULBAItLa2tW7eiEQQ3b948yN9pa2ujTZoSSjEIYcR2FDhIBQCwWCylQwAAMpmMjs9UL4XK9qsC/K2lpaUU23IgKQAAkUhcv359dHR0cHDwnTt35s6dq3oOj8dTCsyLg/NZwU2jODgfSXx8vImJSVBQEAAAQZA5c+aMHDny5MmTNBoN/NkYiESipqYmJcHIyEgAgLOzs1wuh74nKIMsGzA1Ne3XH/XDcXBw6OnpUWBCkCIIwmKxUFeaDweq8HFs2rSJyWTm5ubS6fTJkyernsBisfqN44qD85nAG0IcnI8hIyMjMTExPj4exhxnMpn19fXQFxQAAB04AQA9PT0PHjwAAOjp6aFmTzgltmLFCnNz84yMDPSafD7/2LFjA/2jo6NjR0fHp5R58+bNUqn0yZMnaM7Dhw+1tbU3btz4IeJ6enpwSIogiOrI8sOh0Wj+/v779++3trbu94T29vaPaJtxcD4avCHEwRkQBoORmZnJZDLb2tqKiorodDqdTs/KytqwYUNISEhOTs6cOXPgmVZWVu7u7unp6VKpVCaTRUVFrVix4vnz54WFhS4uLgAAX1/fhoaG+vr6trY2KpUKADAyMsrIyIiKiiopKQEAsFiso0ePbtiwYaDCeHp6MhgMrHW0q6vr5s2bIpGoqKiorKxMJBIVFBQwGIyqqqrCwkKpVPr06dOSkhI2m52Tk9PT0+Pk5JSYmLhz507oPlNXV7dnz57k5OTRo0eLRKL79+/X1dVVV1dD2WfPnhUXF3M4nJycnO7ubgDAggUL8vLyxGJxeno6XM5YXl5eWFiIIEhqampnZyeTyUxJSQEAFBYW1tTU9PX15ebmMpnMJ0+ePH78GKtLQEBAXV3d0qVL+9X00aNH06dP/6Saw8H5KxCwdhIcHBwsGRkZXV1dSpl6enrOzs7u7u5Kvo4CgSApKamrq8vAwGDhwoWmpqaxsbE2NjazZs2CJ5SXl6ekpIwaNWrTpk3QqQQA0NvbGxcXx+Vyhw8fvmbNGgMDg0HK4+fnt2PHjhkzZsBkVVVVZWWltrY2AEBLS2vmzJkZGRnQF4bP5y9dujQzMxPO+YnFYk9Pz7FjxwIAWltbk5OT+/r6qFTq8uXLoSGXzWanp6djZbOysmAhxWKxh4eHo6OjQqG4efNmWVnZlClT4BLJtLQ0uA+AVCodN26cSCRqbGwkkUgKhUJPT8/NzS0/P19XVxdeZNWqVagiIpEoNDQ0PDxcVUcEQaytrRkMBuwu4OCoAbwhxMH525CTkxMfHx8XF6fpgnwkCILAhjkuLs7Lyws2zEokJSU9fPhQab8eHJzPCm4axcH52zB79myxWMxkMjVdkI+hpqaGSqWWlZXBqBT9toIKhSI2NjYsLEz9xcMZyuANIQ7O34mIiIg9e/b8HfekNjc3d3Z25vF4YWFhA02FRkREbNy4USOBHnGGMrhpFAfnb0ZZWVleXt7u3bs1XZC/DJvNrq6udnd3p1AoqkcfPXpUXl6+bds29RcMZ4iDN4Q4OH8/JBIJ9JH5v4RUKv2UVRk4OB/N/wP6pw/pyB2aGgAAAABJRU5ErkJggg==", "image/svg+xml": [ "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ], "text/html": [ "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ] }, "execution_count": 64, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#| label: fig-all-data-prob\n", "#| fig-cap: \"Probability of exceeding the 1.5°C threshold in the HadCRUT5 [@HadCRUT5], GISTEMP [@GISTEMPTeam2020], Berkeley Earth [@BerkeleyEarth], and NOAAGlobalTemp [@NOAA] datasets.\"\n", "\n", "plot(paths_hadcrut.\"Date (month)\", [paths_hadcrut.\"1.5°C Threshold\"], label=\"HadCRUT\", xlabel=\"Date (monthly)\", ylabel=\"Probability\", linewidth=4, linestyle= :dashdot, title=\"\", color=:darkorange)\n", "plot!(paths_gistemp.\"Date (month)\", [paths_gistemp.\"1.5°C Threshold\"], label=\"GISTEMP\", linewidth=4, linestyle= :dot, color=:darkorange2)\n", "plot!(paths_berkeley.\"Date (month)\", [paths_berkeley.\"1.5°C Threshold\"], label=\"Berkeley Earth\", linewidth=4, linestyle= :dash, color=:darkorange3)\n", "plot!(paths_noaa.\"Date (month)\", [paths_noaa.\"1.5°C Threshold\"], label=\"NOAA\", linewidth=4, linestyle= :solid, color=:darkorange4)\n", "plot!(xlims= (Date(2020, 1, 1), Date(2053, 1, 1)), ylims=(0, 1), xticks=(paths_hadcrut.\"Date (month)\"[168:60:end-336], Dates.format.(paths_hadcrut.\"Date (month)\"[168:60:end-336], \"Y\")), fontfamily=\"Computer Modern\", legendfontsize=12, tickfontsize=12, titlefontfamily=\"Computer Modern\", legendfontfamily=\"Computer Modern\", tickfontfamily=\"Computer Modern\", ylabelfontsize=12, xlabelfontsize=12, titlefontsize=12, legend=:bottomright)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\"/Users/jeddy/Library/CloudStorage/OneDrive-AalborgUniversitet/Research/CLIMATE/Paris Goal/Odds-of-breaching-1.5C/figures/Coverage-All-Datasets.png\"" ] }, "execution_count": 65, "metadata": {}, "output_type": "execute_result" } ], "source": [ "savefig(\"figures/Coverage-All-Datasets.png\")" ] } ], "metadata": { "kernelspec": { "display_name": "Julia 1.11.1", "language": "julia", "name": "julia-1.11" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", "version": "1.11.1" } }, "nbformat": 4, "nbformat_minor": 4 }