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Abstract6

Climate change communication is crucial to raising awareness and motivating action. In7

the context of breaching the limits set out by the Paris Agreement, we argue that climate8

scientists should move away from point estimates and towards reporting probabilities. Re-9

porting probabilities will provide policymakers with a range of possible outcomes and will10

allow them to make informed timely decisions. To achieve this goal, we propose a method11

to calculate the probability of breaching the limits set out by the Paris Agreement. The12

method can be summarized as predicting future temperatures under different scenarios and13

calculating the number of possible outcomes that breach the limits as a proportion of the14

total number of outcomes. The probabilities can be computed for different time horizons15

and can be updated as new data become available. As an illustration, we performed a16

simulation study to investigate the probability of breaching the limits in a statistical model.17

Our results show that the probability of breaching the 1.5°C limit is already greater than18

zero for 2024. Moreover, the probability of breaching the limit is greater than 99% by 204219

if no action is taken to reduce greenhouse gas emissions. Our methodology is simple to20

implement and can easily be extended to more complex models of the climate system. We21

encourage climate model developers to include the probabilities of breaching the limits in22

their reports.23

The 1.5°C limit24

The goals of the Paris Agreement (PA) have recently gained renewed media attention due to25

observed temperature anomalies that exceeded 1.5°C above preindustrial levels for 12 consec-26

utive months according to Copernicus Climate Change Service (2024a). The importance of27

the 1.5°C threshold is that it was established in the PA as a limit to avoid the most severe28

consequences of climate change. Formally, the PA aims to limit global warming to well below29

2°C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5°C.30

An obstacle in assessing the success or failure of the PA is the lack of a clear definition of when31

temperature limits are breached (Betts et al. 2023). The definition of when the limits are32

breached is crucial for both scientific and political reasons.33

If we defined the breaching of 1.5°C as the mean temperature for a year being34
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above that limit, it has already been breached.35

However, to avoid short-term fluctuations, the Sixth Assessment Report of Working Group I36

of the Intergovernmental Panel on Climate Change (IPCC) proposes to use a 20-year average37

temperature rise to determine when the limit is exceeded (IPCC 2021). The question remained38

on when inside that 20-year period the limit is breached.39

Betts et al. (2023) argue that defining the breach of the 1.5°C limit as the last year in a 20-year40

period where the global mean temperature is above that limit delays the conclusion of a breach41

by a decade. They propose using the midpoint of the 20-year period as the year when the limit42

is breached. Thus, computing when the threshold will be breached entails averaging several43

years of observed temperature rise with a forecast of the following years up to the 20-year44

period. We extend this methodology to provide the probability of breaching the 1.5°C and 2°C45

limits with the aim of improving the communication of climate change.46

Improving communication of climate change47

One of the main challenges in communicating climate change is the complexity of the topic. This48

complexity makes it difficult to communicate the issue in a way that is easily understandable to49

the general public. In the context of breaching the limits set out by the PA, communication is50

crucial. The issue can become highly politicized if not communicated effectively. The public and51

policymakers need timely information about the urgency of the situation and the consequences52

of inaction.53

One of the first steps in improving communication is to provide data in a clear and under-54

standable way. Datasets report temperature anomalies as the difference between the observed55

temperature and the average temperature for a reference period (GISTEMP 2020; Morice et56

al. 2021; R. A. Rohde and Hausfather 2020). Even though the PA states that the reference57

period should be pre-industrial levels, the datasets typically use a more recent reference period.58

For example, the HadCRUT5 dataset uses the 1961-1990 average temperature as the reference59

period.60
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Figure 1: Temperature anomalies (°C) in the HadCRUT5 dataset (Morice et al. 2021). The
dashed line presents the data according to the baseline period in HadCRUT5 (1961-1990). The
solid line represents the temperature anomalies with the pre-industrial baseline period (1870-
1900).

Source: Breaching 1.5°C: Give me the odds61

Figure 1 shows temperature anomalies as reported by the HadCRUT5 dataset. The figure62

shows that if we use the 1961-1990 average temperature as the reference period, as presented in63

the dataset, the temperature anomalies have not breached the 1.5°C limit yet. However, if we64

use the pre-industrial levels as the reference period, as indicated in the PA, the limit has already65

been breached several times. This mismatch between the reference period used in the datasets66

and the reference period in the PA can lead to misunderstandings and misinterpretations. A67

sceptic reading a news article reporting temperature anomalies breaching the 1.5°C limit above68

pre-industrial levels can easily download and plot the data getting the impression that the69

headline is an exaggeration if they are not aware of the reference period used.70

All datasets should use the same reference period based on the pre-industrial levels.71

This will help to avoid confusion and to make it easier to compare the data. However, for72

historical reasons, data providers should also report temperature anomalies relative to their73
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original reference period. This will help maintain compatibility with previous reports and74

models trained on the original data.75

Predictions for the breaching of the PA limits76

It should be stressed in any report that determining when the 1.5°C limit will be breached77

requires forecasting future temperatures. Forecasts can take many forms. The most common78

are physical models that simulate the climate system [see e.g.; Nath et al. (2022); Eyring79

et al. (2016); Held et al. (2019); Collins, Tett, and Cooper (2001); Orbe et al. (2020)].80

Physics-based models are computationally expensive and require high-performance computing.81

Hence, reduced-complexity models have been developed. These models are based on statistical82

methods and are trained on historical data of different climate variables [see e.g.; Meinshausen,83

Raper, and Wigley (2011); Smith et al. (2024); Bennedsen, Hillebrand, and Koopman (2024)].84

Regardless of the method used to predict future temperatures, forecasts are uncertain. The85

climate system is complex and chaotic. This complexity is reflected in the confidence intervals86

associated with the forecasts. For example, the IPCC provides a range of possible outcomes for87

future temperatures. However, the uncertainty in the forecasts is not communicated effectively88

when discussing breaching the limits set out by the PA.89

The media has recently reported new estimates on when the 1.5°C limit will be breached90

(Copernicus Climate Change Service 2024b; R. Rohde 2024). However, these estimates are91

often presented as point estimates without confidence intervals or without a clear description92

of the methodology used to make the predictions. In the current political environment, it is93

crucial to communicate the uncertainty in the predictions.94

Recent point estimates of when the 1.5°C limit will be breached can be counterproductive if95

not accompanied by probability estimates. In case the limit is not breached in precisely the96

year predicted, it can give climate change deniers an argument to dismiss scientific evidence.97

In the past, extreme winters have been used as an argument against global warming due to98

the misunderstanding of the difference between weather and climate. Where weather refers to99

something more local and only observed over short-time periods, climate is more long-termed.100

The distinction between weather and climate must be clear in any communication101

to avoid misrepresentation of the results.102

4



A new methodology to measure when we will breach the limit of 1.5°C103

We propose a way to communicate the uncertainty in the predictions of when the limits set at104

the PA will be breached. The methodology builds on the proposal by Betts et al. (2023) to105

use a 20-year average temperature rise centered around a particular year. The 20-year average106

is then compared with the 1.5°C and 2°C limits. We use models to produce multiple scenarios107

of future temperature rise and compute the number of scenarios that breach the limits as a108

proportion of the total number of scenarios. The probabilities can be computed for different109

time horizons and can be updated as new data become available. Moreover, the methodology110

can be easily applied for different climate models and datasets.111

There are already several examples of how probabilities can be used to communicate climate112

change effectively [see e.g.; IPCC (2021); Wigley and Raper (2001); S. H. Schneider (2001); S. H.113

Schneider and Mastrandrea (2005); T. Schneider et al. (2023)]. By reporting probabilities,114

we can communicate the uncertainty in the predictions and provide policymakers115

with a range of possible outcomes. This will allow policymakers to make more informed116

decisions on taking action to reduce greenhouse gas emissions. Reporting in 2024 a probability117

of 50% that the limit will be breached in 2030 will give an indication of the urgency of the118

situation. The probability distribution will also reflect how the odds of avoiding the breach119

decrease over time if no action is taken. This will provide a clear picture of the consequences120

of delaying action.121

To illustrate our methodology, we developed a simulation study. We simulate multiple scenarios122

of future temperature rise and calculate the probability of breaching the 1.5°C and 2°C limits.123

The simulation study is presented next.124

A statistical model to predict future temperatures125

Data. The data used in this paper is the global mean temperature anomaly of the HadCRUT5126

dataset computed by the Met Office Hadley Centre Morice et al. (2021). The data are reported127

as the difference between the observed temperature and the 1961-1990 average temperature and128

are available from 1850. We first convert the data to anomalies compared to pre-industrial levels.129

The pre-industrial levels are defined as the average temperature from the earliest available data130

up to 1900. The data is presented in Figure 1.131

HadCRUT5 provides 200 realizations to account for the uncertainty in the data. We use all132
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realizations to fit the models and produce multiple scenarios of future temperature rise. This133

allows us to account for the uncertainty in the data and to provide a range of possible outcomes.134

We fit the models to each realization separately and produce five different scenarios of future135

temperatures for each realization. This gives us a total of 1000 scenarios of future temperatures.136

The methodology can be easily extended to include more realizations and scenarios.137

Modeling scheme. Our modeling scheme consists of three components: a trend specification,138

an El Niño Southern Oscillation (ENSO) model, and a long-range dependent error term. We139

provide a brief overview of the models. Further technical details on the models are presented140

in the supplementary material in the appendix, and the code used to perform the simulation141

study is available in a Jupyter notebook in the supplementary material.142

We consider three trend specifications for modeling the global mean temperature anomaly: a143

linear trend model, a quadratic trend model, and a linear trend that allows for a break. The144

models are estimated on the historical temperature data. The best model is selected on the145

basis of the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC)146

(Akaike 1974; Schwarz 1978). For each realization, the model with the lowest AIC and BIC is147

considered the best model and is used to predict future temperatures.148

Furthermore, we control for the El Niño effect as it is known to have an effect on the global149

mean temperature anomaly (Thirumalai et al. 2017; Jiang et al. 2024). To control for the El150

Niño effect we include the Oceanic Niño Index (ONI) as a covariate in the models. The ONI is151

an indicator for monitoring the ENSO. El Niño conditions are present when the ONI is +0.5152

or higher. Oceanic La Niña conditions exist when the ONI is -0.5 or lower.153

For forecasting purposes, we fit a Markov-switching model to the ONI data to predict future154

values (Hamilton 1989, 1990). The motivation for using a Markov-switching model is that the155

ONI data naturally exhibit regime changes over time. The number of states in the Markov-156

switching model is 7, which is selected on the basis of the AIC and BIC. The seven states157

correspond to the different phases of the ENSO cycle, ranging from very strong El Niño, strong158

El Niño, moderate El Niño, neutral, moderate La Niña, strong La Niña, to very strong La Niña.159

Finally, our modeling scheme allows for the error term to have long-range dependence. Long-160

range dependence has its origin in the analysis of climate data (Hurst 1956). Temperature data161

are known to have long-range dependence, which means that the error terms are correlated162

over long periods (Bloomfield and Nychka 1992; Bloomfield 1992; J. Eduardo Vera-Valdés163
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2021). The long-range dependence parameter is estimated using the exact local Whittle method164

(Shimotsu and Phillips 2005).165

Model validation. We obtain the prediction intervals for temperature anomalies using our166

modeling scheme fitted to data up to November 2016, the month when the PA entered into167

force. All HadCRUT5 realizations are considered. The results, presented in the supplemen-168

tary material, show that our models provide adequate coverage of the observed temperature169

anomalies up to the present day. We take this as validation of our modeling scheme.170

Model fitting. As an illustration, we present a fitted model and its forecast for realization171

10 of the HadCRUT5 dataset. Realization 10 is chosen arbitrarily. The model is fitted to the172

data up to the last observation. The model is then used to forecast future temperatures. The173

results are presented in Figure 2.174

Figure 2: Forecast of temperature anomalies for realization 10 of the HadCRUT5 dataset. The
forecast is based on the broken trend model with long-range dependence and El Niño as an
exogenous variable. A simulated El Niño series using a Markov-switching model with 7 states
was used to generate the forecast.

Source: Breaching 1.5°C: Give me the odds175
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Figure 2 highlights the different components of the model: the trend, the long-range dependence,176

and the El Niño effect.177

The trend component captures the long-term increase in the temperature anomaly, all other178

things being equal. The long-range dependence captures the persistence of the temperature179

anomaly over time. Given that recent temperatures are high, the long-range dependence in180

the data implies that future temperatures are likely to remain high. This directly affects the181

forecasted temperature and the probability of breaching the limits. Finally, the El Niño effect182

captures the short-term fluctuations in the temperature anomaly. The forecasted temperature183

anomaly is the sum of the trend, the long-range dependence, and the El Niño effect.184

Breaching the limits. For each simulated path, we calculate the average temperature for185

20 years using a moving average. We began the process in 2004 to obtain a 20-year average186

temperature rise centered around 2014 and with an end point in the current year. The moving187

average is then calculated for each month. We repeat this process until the end of the forecasted188

period. We then find the first month where the 20-year average temperature rise breaches the189

1.5°C and 2°C limits.190
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Figure 3: Breaching of the 1.5°C threshold for realization 10 of the HadCRUT5 dataset. The
figure shows the temperature anomalies and the forecasted path for the next several months.
The 20-year period is highlighted in gray, and the 20-year average is shown as a black dashed
line.

Source: Breaching 1.5°C: Give me the odds191

Figure 3 shows that the 20-year average temperature for the simulated path of realization 10192

first breaches the 1.5°C limit in July of 2031. The gray box indicates the 20-year period used193

to calculate the average temperature rise, while the black dashed line indicates the 20-year194

average temperature.195

The month in which the limit is breached for this path is highly dependent on the El Niño effect.196

Hence, we conduct a simulation study to estimate the probability of breaching the limits.197

Simulation study198

Using the modeling scheme described above, we detail a way to compute the probability of199

breaching the limits set out by the PA using a simulation study. The use of Monte Carlo meth-200

ods, as the one used in this simulation study, is a common approach to estimate probabilities201

in complex systems, and it is pursued by the IPCC (Abel, Eggleston, and Pullus 2002). The202
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simulation study has two main steps.203

First, we forecast the global mean temperature anomaly using the best model selected using204

the information criteria. For each realization of the HadCRUT5 dataset, we simulate 5 different205

scenarios of future temperature rise by simulating different paths for El Niño effect. This gives206

us a total of 1000 scenarios of future temperatures. Figure 4 shows the simulated temperature207

anomalies for a subset of the realizations to simplify visualization and plot rendering.208

Figure 4: Simulated forecast paths for HadCRUT5 temperature anomalies. One hundred paths
of a total of 1000 paths are shown to ease visualization. The forecasts are based on the
best-fitting model for each realization, with El Niño as an exogenous variable. For ease of
visualization, the mean of all temperature anomaly realizations is shown as a solid line.

Source: Breaching 1.5°C: Give me the odds209

In a second step, we calculate the 20-year moving average centered around a particular month210

for each simulated path. We repeat this process for all simulated paths and recover the ratio211

of paths that breach the 1.5°C and 2°C limits each month to the total number of paths. We212

then plot this proportion of paths that crossed either threshold to obtain an estimate of the213

probability of breaching the limits. Figure 5 presents the results of the simulation study.214
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Figure 5: Proportion of scenarios that breach the 1.5°C and 2°C thresholds for the HadCRUT5
temperature anomalies for each month. The figure considers 1000 scenarios, each based on
the best-fitting model for each realization, with five simulations for El Niño as an exogenous
variable each.

Source: Breaching 1.5°C: Give me the odds215

Some key results from the simulation study are presented in Table 1. The table shows the first216

month the 1.5°C and 2°C limits are breached at a given probability level. The results are based217

considering the 20-year average temperature.218

Table 1: Months to breach the 1.5°C and 2°C thresholds for the HadCRUT5 temperature
anomalies at a given probability level.

Probability level and period 1.5°C threshold 2°C threshold

Above 0%, 20-years avg. 2024-09-01 2033-11-01

Above 50%, 20-years avg. 2030-07-01 2055-11-01

Above 99%, 20-years avg. 2042-02-01 2068-04-01

Above 0%, 30-years avg. 2029-09-01 2040-04-01

Above 50%, 30-years avg. 2035-08-01 2060-11-01
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Probability level and period 1.5°C threshold 2°C threshold

Above 99%, 30-years avg. 2046-12-01 2072-12-01

The simulation study considered here shows that the probability of breaching the219

1.5°C limit is already greater than zero for 2024.220

This means that there is at least one scenario in which the 20-year average temperature rise221

breaches the 1.5°C limit in September 2024. Moreover, note that there is a rapid increase in222

the probability of breaching the 1.5°C limit after 2030. The probability of breaching the limit is223

already greater than 50% by July 2030. This is in line with recent predictions that the goal will224

likely be breached in the second half of the 2030 decade (Copernicus Climate Change Service225

2024b; R. Rohde 2024). Our simulation study provides an estimate of the monthly probabilities226

of breaching the goals. They show that the probability of breaching the 1.5°C limit is greater227

than 99% by 2042 if no action is taken to reduce greenhouse gas emissions.228

Regarding the 2°C limit, our simulation study finds that the probability of breach already229

starts increasing above zero by the 2030 decade. In general, the simulation study highlights230

that climate change mitigation policies should be implemented as soon as possible to avoid231

breaching the limits set by the PA.232

Furthermore, Table 1 shows the breaching probabilities considering a 30-year average. The233

motivation for considering the 30-year average temperature is that baseline periods for climate234

data are often defined as 30-year averages (Morice et al. 2021; GISTEMP 2020; R. A. Rohde and235

Hausfather 2020). Moreover, some studies use the 30-year average temperature to determine236

when the limits are breached (Copernicus Climate Change Service 2024b). The results are237

How has the probabilities changed since the Paris Agreement238

As model validation, Figure 6 presents the prediction intervals for temperature anomalies for239

the modeling scheme described above starting in November 2016, the month when the PA240

entered into force. The results using the data up to the PA are presented in the supplementary241

Jupyter notebook.242
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Figure 6: Simulated forecast paths for HadCRUT5 temperature anomalies. The 95% and 99%
prediction intervals are shown as shaded areas. The IPCC projections for the minimum and
maximum temperature anomalies are shown as dashed lines (Allen et al. 2018).

Source: Breaching 1.5°C: Give me the odds243

The prediction intervals are based on the historical data up to the start of the PA and the244

models fitted to the data. The prediction intervals are used to assess the uncertainty in the245

forecasts. In general, the prediction intervals provide adequate coverage of the observed temper-246

ature anomalies. However, note that recent high temperatures fall outside the 99% prediction247

intervals. This further signals the abnormality of the recent temperature observations. Several248

theories have been proposed to explain recent high temperatures, including decreased cloud249

coverage and international shipping regulatory changes (Goessling, Rackow, and Jung; Quaglia250

and Visioni 2024). Regardless of the cause, the high temperatures highlight the urgency of the251

situation.252

In contrast, the figure presents the temperature projections from the summary for policymakers253

of the IPCC Special Report: Global Warming of 1.5°C (Allen et al. 2018). The paths show the254

projected temperature evolution according to the IPCC if CO2 emission gradually decrease to255
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zero by 2055, while other greenhouse gas levels stop changing after 2030. The figure shows that256

recent temperatures are outside the IPCC projections. Hence, the IPCC projections coverage257

is lacking, and the projections are likely to be too optimistic.258

Furthermore, Figure 7 presents the probabilities of breaching the 1.5°C and 2°C limits at the259

start of the PA.260

Figure 7: Proportion of scenarios that breach the 1.5°C and 2°C thresholds for the HadCRUT5
temperature anomalies for each month at the start of the Paris Agreement. The figure considers
1000 scenarios, each based on the best-fitting model for each realization, with five simulations
for El Niño as an exogenous variable each.

Source: Breaching 1.5°C: Give me the odds261

The figure allows us to assess how the probability of breaching the limits has changed since the262

PA. At the start of the PA, the probability of breaching the 1.5°C limit with a probability of263

99% was not encountered until 2051. The probability of breaching the 2°C limit at a probability264

of 99% was not encountered in the forecast period ending in 2083. The results are related to the265

exercise of Copernicus Climate Change Service (2023) on the time lost since the PA considering266

a point estimate, while we provide the probabilities of breaching the limits. Probabilities have267

increased significantly since the PA, which highlights that the urgency of the situation has268
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increased since the PA.269

Discussion and further work270

We have presented a new way to communicate when we will breach the temperature limits271

set out by the PA. Our methodology is simple to implement. It requires predicting future272

temperatures under different scenarios and calculating the number of possible outcomes that273

breach the limits as a proportion of the total number of outcomes. The probabilities can be274

computed for different time horizons and datasets and can be updated as new data becomes275

available. Additional simulation exercises considering alternative datasets and sub-samples of276

realizations are presented in the supplementary material. They show that the breaching dates277

are robust to the choice of dataset. Moreover, and additional analysis of the probabilities of278

breaching the limits since the PA is presented in the supplementary material. It shows that279

the probabilities have increased significantly since the PA, highlighting that the actions taken280

so far have not been sufficient to avoid breaching the limits.281

We have illustrated the methodology in a simulation study. The simulation study is based on282

statistical models trained on historical temperature data to predict future temperatures. Our283

results are based on the assumption that no structural changes will occur in the future. In284

that sense, our results could be interpreted as a scenario in which no action is taken to reduce285

greenhouse gas emissions from the current levels.286

The methodology can be easily extended to include different scenarios of future emissions and287

more complex models of the climate system. Climate models such as MAGICC already provide288

a range of possible outcomes for future temperatures; our methodology can be easily applied to289

these models. We encourage climate model developers to include the probabilities of breaching290

the limits in their reports.291

Reproducibility292

The code used to perform the simulation study is available in a Jupyter notebook in the supple-293

mentary material. The code is written in Julia (Bezanson et al. 2017). The Julia programming294

language is a high-level and high-performance language for technical computing. Additional295

packages used in the simulation study are the DataFrames.jl package for data manipula-296

tion (Bouchet-Valat and Kamiński 2023), the MarSwitching.jl package for Markov-switching297

models (Dadej 2024), the LongMemory.jl package for long-range dependent models (J. E. Vera-298
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Valdés 2024), the CSV.jl package to read and write CSV files (Quinn et al. 2024), and the299

Plots.jl package for plotting (Breloff 2024).300

The code is well documented and includes comments to explain the different steps of the301

simulation study. The code is open-source and can be freely used and modified. We encourage302

other researchers to use the code to reproduce our results and to extend the methodology to303

other datasets and models.304
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Trend models460

We consider three trend specifications for modeling the global mean temperature anomaly: a461

linear trend model, a quadratic trend model, and a linear trend allowing for a break. The462

models are given by:463

• Linear Trend: 𝑦𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛾𝑂𝑁𝐼𝑡 + 𝜖𝑡,464

• Quadratic Trend: 𝑦𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑡2 + 𝛾𝑂𝑁𝐼𝑡 + 𝜖𝑡,465

• Trend with Break: 𝑦𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2𝐼𝑡>𝑡0
+ 𝛾𝑂𝑁𝐼𝑡 + 𝜖𝑡.466

Above, 𝑦𝑡 is the global mean temperature anomaly at time 𝑡, 𝛽0, 𝛽1, and 𝛽2 are the trend467

coefficients, 𝛾 is the coefficient of the El Niño effect, 𝑂𝑁𝐼𝑡 is the variable that models the El468

Niño events, and 𝜖𝑡 is the error term. As described in the following, the error term is assumed469

to have long-range dependence. The variable 𝐼𝑡>𝑡0
is an indicator variable that takes the value470

1 if 𝑡 > 𝑡0 and 0 otherwise. The break point 𝑡0 is estimated from the data.471

The models are estimated on the historical temperature data. The best model is selected based472

on the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) (Akaike473

1974; Schwarz 1978). For each realization, the model with the lowest AIC and BIC is considered474

the best model and is used to predict future temperatures.475

For example, the AIC and BIC for the trend models fitted to realization 10 are presented in476

Table 2.477

Table 2: Information criteria for model selection.

Model AIC BIC

Linear Trend -5613.2 -5596.64

Quadratic Trend -6551.17 -6529.09

Trend with Break -6627.33 -6605.25

The estimated coefficient confidence intervals are used to simulate future values of the tem-478

perature anomaly. The confidence intervals are obtained from the coefficients’ (asymptotic)479

distribution. Under normally distributed error term, the coefficient estimators are normally480

distributed with mean and variance given by the following formula:481
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̂𝛽 ∼ 𝑁(𝛽, 𝜎2(𝑋′𝑋)−1),

where ̂𝛽 are the estimates, 𝛽 are the true coefficients, 𝜎2 is the variance of the error term,482

and 𝑋 is the design matrix. In case of non-normal error term, the coefficient estimators are483

asymptotically normal using the central limit theorem under mild conditions (Wooldridge 2010).484

El Niño Southern Oscillation (ENSO) model485

El Niño Southern Oscillation (ENSO) is a natural climate phenomenon that influences global486

temperature. It is characterized by periodic warming of sea surface temperatures in the central487

and eastern equatorial Pacific Ocean. It is observed every 2-7 years and can last from 9 months488

to 2 years.489

Modeling the El Niño effect is crucial for predicting future temperatures. To control for the El490

Niño effect, we include the Oceanic Niño Index (ONI) as a covariate in the models as described491

above. The ONI is an indicator for monitoring the ENSO. El Niño conditions are present when492

the ONI is +0.5 or higher. Oceanic La Niña conditions exist when the ONI is -0.5 or lower.493

One complication with the El Niño effect is that it is difficult to predict. The El Niño events494

are highly variable and can have different intensities. The El Niño effect can also interact with495

other climate phenomena, such as the Indian Ocean Dipole and the Madden-Julian Oscillation.496

This makes it challenging to model the El Niño effect accurately [see e.g.; Thirumalai et al.497

(2024); Ham, Kim, and Luo (2019); L’Heureux et al. (2020); Hassanibesheli, Kurths, and498

Boers (2022)]. In this study, we use a simple model to capture the El Niño effect. The model499

is based on the historical ONI data and is used to simulate future ONI values.500

The dynamics of the ONI are modeled using a Markov-switching model (Hamilton 1989). The501

Markov-switching model is a regime-switching model that allows for the presence of different502

regimes in the data. The model is given by:503

𝑂𝑁𝐼𝑡 = 𝛽𝑗 + 𝜖𝑗,𝑡,

where 𝛽𝑗 is the coefficient for the 𝑗-th regime, and 𝜖𝑗,𝑡 is the error term with variance 𝜎2
𝑗 . A504

latent state at time 𝑡, 𝑠𝑡, indicates the regime. The dynamics of 𝑠𝑡 are governed by a Markov505
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process:506

𝑃𝑟(𝑠𝑡 = 𝑗|𝑠𝑡−1 = 𝑖, 𝑠𝑡−2, ⋯ , 𝑠1) = 𝑃𝑟(𝑠𝑡 = 𝑗|𝑠𝑡−1 = 𝑖) = 𝑝𝑖𝑗,

where 𝑝𝑖𝑗 is the transition probability from state 𝑖 to 𝑗.507

Note that the probability distribution of 𝑠𝑡 given the entire path {𝑠𝑡−1, 𝑠𝑡−2, ⋯ , 𝑠1} depends508

only on the most recent state 𝑠𝑡−1.509

In historical data, the effect can be estimated using maximum likelihood estimation and the510

expectation-maximization algorithm (Hamilton 1990). For forecasting, the effect is simulated511

using a stochastic process taking into account the probability of each regime.512

To determine the number of regimes, we use the AIC and BIC. We consider a range of possible513

regimes and select the number of regimes that minimize the AIC and BIC. Table 3 shows the514

AIC and BIC for the ONI data. Only odd numbers of regimes are considered to ensure that515

the model includes both El Niño and La Niña events and neutral conditions.516

Table 3: Information criteria for model selection.

Regimes AIC BIC

3-regimes 2438 2504

5-regimes 2342 2507

7-regimes 1394 1703

Hence, the number of states in the Markov-switching model is seven. The seven states are517

chosen to correspond to the different phases of the ENSO cycle ranging from very strong El518

Niño, strong El Niño, moderate El Niño, neutral, moderate La Niña, strong La Niña, to very519

strong La Niña.520

Long-range dependent error term521

Long-range dependent models imply that past values of the series have a long-lasting effect522

on the current value. It describes the tendency for successive values to remain close to each523

other or to be dependent. Interestingly, the notion of long-range dependence originated in the524

analysis related to climate data in the pioneering work of Hurst (1956) on the Nile River minima.525

Hurst determined that a dam built to control river flow should be designed to withstand the526

worst-case scenario. The worst-case scenario was determined by the long-range dependence in527
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the data. Years with high minima were likely to be followed by years with high minima. This528

phenomenon is known as the Joseph effect. This is due to Joseph’s interpretation in the Old529

Testament of Pharaoh’s dream, which predicted that seven years of plenty would be followed530

by seven years of famine.531

A long-range dependent model can be written as:532

𝑦𝑡 =
∞

∑
𝑗=1

𝜙𝑗𝑦𝑡−𝑗 + 𝜖𝑡,

where 𝜖𝑡 is an i.i.d. process. The coefficients 𝜙𝑗 decay hyperbolically (slowly) to zero as 𝑗533

increases. In contrast, the coefficients of standard models decay exponentially to zero.534

The temperature series exhibit long-range dependence. In the context of breaching the limits535

set out by the PA, the long-range dependence in the data is crucial since it affects the forecasted536

temperature rise.537

One likely explanation behind the presence of long-range dependence in the data is aggregation538

(Clive W. J. Granger 1980; Zaffaroni 2004; Haldrup and Vera-Valdés 2017). The global mean539

temperature anomaly is an aggregate of temperature data from different regions. The aggrega-540

tion process can lead to long-range dependence in the data. To account for this property, we541

model the error term in the trend models as a long-range dependent process.542

We used the exact local Whittle estimator to estimate the long-range dependence in the data543

(Shimotsu and Phillips 2005). The exact local Whittle estimator is a semi-parametric estima-544

tor that estimates the long-range dependence parameter by maximizing the modified Whittle545

likelihood function originally proposed by Künsch (1987).546

The exact local Whittle estimator minimizes the function given by:547

𝑅(𝑑) = log ( 1
𝑚

𝑚
∑
𝑘=1

𝐼Δ𝑑(𝜆𝑘)) − 2𝑑
𝑚

𝑚
∑
𝑘=1

log(𝜆𝑘),

where 𝐼Δ𝑑(𝜆𝑘) is the periodogram of (1 − 𝐿)𝑑𝑥𝑡, where (1 − 𝐿)𝑑 is the fractional difference548

operator (C. W. J. Granger and Joyeux 1980; Hosking 1981), 𝜆𝑘 = 𝑒𝑖2𝜋𝑘/𝑇 are the Fourier549

frequencies, and 𝑚 is the bandwidth parameter.550

The exact local Whittle estimator is consistent and asymptotically normal. The long-range551
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dependence parameter is estimated for each realization separately. The estimated parameter is552

then used to simulate the error term in the models.553

Alternative data sources554

The simulation study is based on the HadCRUT5 dataset. However, the methodology can be555

easily extended to include other datasets. For example, the GISTEMP and Berkeley Earth556

datasets (GISTEMP 2020; R. A. Rohde and Hausfather 2020) provide alternative temperature557

anomalies data.558

The GISTEMP dataset is produced by the NASA Goddard Institute for Space Studies and559

provides global temperature anomalies data from 1880. The results using the GISTEMP dataset560

are presented in Figure 8 and are summarized in Table 4a. The results are based on the561

simulation study presented in the supplementary Jupyter notebook.562

Figure 8: Proportion of scenarios that breach the 1.5°C and 2°C thresholds for the GISTEMP
temperature anomalies for each month. The figure considers 1000 scenarios, each based on
the best-fitting model for each realization, with five simulations for El Niño as an exogenous
variable each.

Source: Breaching 1.5°C: Give me the odds563
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The results for the GISTEMP dataset show that the probability of breaching the 1.5°C limit is564

already greater than zero for May of 2027. Moreover, the probability of breaching it is greater565

than 99% by 2043. The results are in line with the results obtained using the HadCRUT5566

dataset.567

The Berkeley Earth dataset is produced by the Berkeley Earth project and provides global568

temperature anomalies data from 1850. The results using the Berkeley Earth dataset are569

presented Figure 9 and are summarized in Table 4b. The results are based on the simulation570

study presented in the supplementary Jupyter notebook.571

Figure 9: Proportion of scenarios that breach the 1.5°C and 2°C thresholds for the Berkeley
Earth temperature anomalies for each month. The figure considers 1000 scenarios, each based
on the best-fitting model for each realization, with five simulations for El Niño as an exogenous
variable each.

Source: Breaching 1.5°C: Give me the odds572

The results for the Berkeley Earth dataset show that the probability of breaching the 1.5°C573

limit is already greater than zero for September of 2024. Moreover, the probability of breaching574

it is greater than 99% by 2036. The results show a more rapid increase in the probability of575
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Table 4: Months to breach the 1.5°C and 2°C thresholds for alternative temperature anomalies
datasets at a given probability level.

(a) GISTEMP dataset

Probability level and period 1.5°C threshold 2°C threshold
Above 0%, 20-years avg. 2027-05-01 2047-09-01
Above 50%, 20-years avg. 2033-06-01 2060-01-01
Above 99%, 20-years avg. 2043-12-01 2071-02-01
Above 0%, 30-years avg. 2033-02-01 2052-09-01
Above 50%, 30-years avg. 2039-06-01 2065-01-01
Above 99%, 30-years avg. 2048-10-01 2075-12-01

(b) Berkeley Earth dataset

Probability level and period 1.5°C threshold 2°C threshold
Above 0%, 20-years avg. 2024-09-01 2041-10-01
Above 50%, 20-years avg. 2028-06-01 2053-08-01
Above 99%, 20-years avg. 2036-01-01 2063-08-01
Above 0%, 30-years avg. 2029-09-01 2046-05-01
Above 50%, 30-years avg. 2033-12-01 2058-10-01
Above 99%, 30-years avg. 2040-01-01 2068-11-01

breaching the 1.5°C limit compared to the HadCRUT5 dataset.576
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