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 Note

The following is a replication notebook of the paper by M. Bennedsen, E. Hillebrand,
and S. J. Koopman [1]. The replication is done in Julia using Quarto as part of the paper
“On measurements errors in CO2 airborne fraction estimates” by J. Eduardo Vera-Valdés and
Charisios Grivas. This notebook contains no new results.

Notebook setup
This notebook is written in Julia and uses the following packages:

• DataFrames for data manipulation
• XLSX for reading data from an Excel file
• Plots
• LinearAlgebra
• Statsistics
• HypothesisTests

All packages are available in the Julia registry and can be installed using the Julia package
manager with the following command:

using Pkg
Pkg.add("DataFrames", "XLSX", "Plots", "LinearAlgebra", "Statistics",
"HypothesisTests")
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In the following, we load a project environment that contains the necessary packages. This
step is not required if the packages are already installed in the current environment.

Airborne fraction
The airborne fraction is the fraction of CO2 emissions that remain in the atmosphere. It is a
key parameter in the carbon cycle and is used to estimate the impact of human activities on
the climate system. The airborne fraction is defined as the ratio of the increase in atmospheric
CO2 concentration to the total CO2 emissions. It is usually expressed as a percentage.

Data
We load the data from an Excel file and plot the CO2 emissions and the atmospheric CO2
concentration over time.

The data is neatly collected in an Excel file in the author’s GitHub repository at the following
link.

To ease things up, we have downloaded the data directly from the repository and saved it in
the file AF_data.xlsx in the local folder.

We can read the data using the XLSX.jl package, convert it to a data frame using
DataFrames.jl. We then recover the year, emissions, and coverage variables. Note that emis-
sions are defined as the sum of fossil fuels (FF) and land-use and land-coverage changes
(LULCC).

using DataFrames, XLSX, LinearAlgebra

path = "AF_data.xlsx"

data = DataFrame(XLSX.readtable(path, "Data"))

year = data[!, 1];
fossilfuels = Vector{Float64}(data[!, 4]);
lulcc = Vector{Float64}(data[!, 6]);
emissions = fossilfuels .+ lulcc;
coverage = Vector{Float64}(data[!, 5]);

VAI = Vector{Float64}(data[!,9]);
ENSO = Vector{Float64}(data[!, 10]);
E = emissions;
G = coverage;

Note that atmospheric concentration growth, denoted G from hereinafter, is transformed into
a vector of Float64 at definition to avoid type issues. Emissions, the sum of fossil fuels
(fossilfuels) and land-use and land-coverage changes (lulcc), are denoted by E.

Once loaded, we can plot the data using the Plots.jl package.
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Classic estimation
Commonly, the airborne fraction is estimated using the following formula:

𝐺𝑡
𝐸𝑡
= 𝛼+ 𝜖𝑡

where 𝐺𝑡 is the atmospheric CO2 concentration at time 𝑡, 𝐸𝑡 is the total CO2 emissions at
time 𝑡, and 𝜖𝑡 is the error term that captures the natural variability in the carbon cycle. The
parameter 𝛼 is the airborne fraction.

In practice, we estimate 𝛼 by taking the mean of the ratio of the coverage to the emissions.

using Statistics

α₁ = mean(G ./ E)

0.43856861803874964

This value is the estimated airborne fraction, which is the consensus value in the literature.

We plot the yearly airborne fraction and the estimated mean airborne fraction.
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A new approach
Recently, M. Bennedsen, E. Hillebrand, and S. J. Koopman [1] has suggested a new approach
to estimate the airborne fraction. They propose to use the following formula:

𝐺𝑡 = 𝛼𝐸𝑡 + 𝜖𝑡,

and estimate 𝛼, the airborne fraction, using ordinary least squares (OLS). They argue that
this approach provides better statistical properties. Among them, the OLS estimator is super-
consistent, meaning that it converges to the true value at a faster rate than the standard OLS
estimator. They also show that the estimator has lower variance and is asymptotically normal.

The new approach relies on estimating the cointegration relationship between the emis-
sions and the coverage using OLS. As for all cointegration analyses, as a first step, we need
to check if the variables are integrated of the same order. We can do this by testing for the
presence of a unit root in the series.

Unit root test
We use the Augmented Dickey-Fuller (ADF) [2] test to test for the presence of a unit root in
the series. The null hypothesis is that the series has a unit root, while the alternative hypoth-
esis is that the series is stationary.

In Julia, we can use the ADFTest function from the HypothesisTests.jl package to perform
the test.

As a demonstration, we test the emissions series for the presence of a unit root in a model
with a trend and two lags.

using HypothesisTests
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τᵉₜ = ADFTest(E, :trend, 2)

Augmented Dickey-Fuller unit root test
--------------------------------------
Population details:
    parameter of interest:   coefficient on lagged non-differenced variable
    value under h_0:         0
    point estimate:          -0.262114

Test summary:
    outcome with 95% confidence: fail to reject h_0
    p-value:                     0.2907

Details:
    sample size in regression:          61
    number of lags:                     2
    ADF statistic:                      -2.57687
    Critical values at 1%, 5%, and 10%: [-4.10768 -3.48147 -3.16849]

In this case, the null hypothesis of a unit root in the emissions series is not rejected.

We can perform the same test for the coverage series while considering different combinations
of models and lags.

# Dataframe to store the results
resultsdf = DataFrame("Variable" => String[], "Model" => String[], "L = 0" =>
Float64[], "L = 1" => Float64[], "L = 2" => Float64[], "L = 3" => Float64[],
"L = 4" => Float64[], "L = 5" => Float64[])

for variable in [:E, :G]
    for model in [:none, :constant, :trend]
        fila = zeros(6)
        for lags in 0:5
            τ = ADFTest(eval(variable), model, lags)
            fila[lags+1] = pvalue(τ)
        end
        push!(resultsdf, [titlecase(string(variable)),
titlecase(string(model)), fila...])
    end
end

resultsdf

Based on these results, we cannot reject the null hypothesis of a unit root in the emissions
series for all models and lags. For the coverage series, the tests reject except for the model
with a trend. This suggests that both series seem stationary.

Cointegration test
We can test for cointegration between the emissions and the coverage using the R. F. Engle
and C. W. J. Granger [3] test. The null hypothesis is that there is no cointegration relationship
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between the series, while the alternative hypothesis is that there is a cointegration relation-
ship.

To test for cointegration, we first estimate the OLS regression of the coverage on the emis-
sions. We then test the residuals for a unit root using the ADF test. Note that the residuals
should be stationary if there is a cointegration relationship between the series.

α₂ = (E'E) \ (E'G)

0.4477918844144535

The estimated airborne fraction is slightly larger than the classical estimate.

To test if there is a cointegration relationship, and thus that we have a valid estimate, we must
recover the residuals and test them for a unit root.

res₂ = G - α₂ * E

τᵣ = ADFTest(res₂, :none, 0)

Augmented Dickey-Fuller unit root test
--------------------------------------
Population details:
    parameter of interest:   coefficient on lagged non-differenced variable
    value under h_0:         0
    point estimate:          -0.963507

Test summary:
    outcome with 95% confidence: reject h_0
    p-value:                     <1e-11

Details:
    sample size in regression:          63
    number of lags:                     0
    ADF statistic:                      -7.58332
    Critical values at 1%, 5%, and 10%: [-2.60156 -1.9459 -1.61324]

The test statistic has to be compared against the critical values generated by J. G. MacKinnon
[4]. We can reject the null hypothesis of a unit root in the residuals, which suggests that there
is a cointegration relationship between the emissions and the coverage and the estimate is
valid.

Standard errors
We compute the standard errors of the estimates of the airborne fraction using the formula:

𝑆𝐷(𝛼) = √�̂�2𝜖 (𝐸′𝐸)
−1,

where �̂�2𝜖 = ∑𝜖2/𝑁  is the estimate of the variance of the error term and 𝜖𝑡 are the residuals
from the regression.
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rss₂ = sum((G - α₂ * E).^2)
σ²₂ = rss₂ / (length(G) - 1)

sd₍α₂₎ = sqrt( σ²₂ / (E'E) )

0.014241317441433234

Additional covariates
We consider adding additional covariates to the model. In particular, we consider adding
𝐸𝑁𝑆𝑂 (El Niño Southern Oscillation) and 𝑉 𝐴𝐼  (volcanic activity index) as covariates. These
variables are known to affect the carbon cycle and can potentially influence the airborne frac-
tion.

We estimate the following model:

𝐺𝑡 = 𝛼𝐸𝑡 + 𝛾1𝐸𝑁𝑆𝑂𝑡 + 𝛾2𝑉 𝐴𝐼𝑡 + 𝜖𝑡,

where 𝐸𝑁𝑆𝑂𝑡 and 𝑉 𝐴𝐼𝑡 are the El Niño Southern Oscillation and volcanic activity index at
time 𝑡, respectively.

Note that the authors first detrend the ENSO series before estimating the model. We can do
this by regressing the series on a time trend and taking the residuals.

T = length(ENSO)
Xₜ = [ones(T) collect(1:T)]
ρ = (Xₜ'Xₜ) \ (Xₜ'ENSO)
ENSOᵨ = ENSO - Xₜ * ρ;

We estimate the extended model using OLS.

Xₑ = [E ENSOᵨ VAI]

αₑ = (Xₑ'Xₑ) \ (Xₑ'G)

3-element Vector{Float64}:
   0.4696645797106208
   1.0024516231210219
 -15.1482109617327

Standard errors are computed with the multivariate version of the variance formula:

𝑉 𝑎𝑟(𝛼) = �̂�2𝜖 (𝑋′𝑋)
−1,

where 𝑋 is the matrix of all regressors.

rssₑ = sum((G - Xₑ*αₑ).^2)
σ²ₑ = rssₑ / (length(G) - 3)
var₍αₑ₎ = σ²ₑ *  inv(Xₑ'Xₑ) 
sqrt.(var₍αₑ₎[1,1])
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0.01058726080675776

Recent subsample
Given the variability of the LULCC measurements at the beginning of the series, we consider
a recent subsample of the data. We consider the data from 1992 and estimate the airborne
fraction using the new approach.

Getting subsample data.

E92 = E[year .>= 1992];
G92 = G[year .>= 1992];
VAI92 = VAI[year .>= 1992];
ENSOᵨ92 = ENSOᵨ[year .>= 1992];

Estimating in the subsample.

Simple specification.

α92₂ = (E92'E92) \ (E92'G92)
rss92₂ = sum((G92 - α92₂ * E92).^2)
σ92²₂ = rss92₂ / (length(G92) - 1)
sd₍α92₂₎ = sqrt( σ92²₂ / (E92'E92) )

[α92₂ sd₍α92₂₎]

1×2 Matrix{Float64}:
 0.44967  0.017309

X92ₑ = [E92 ENSOᵨ92 VAI92]
α92ₑ = (X92ₑ'X92ₑ) \ (X92ₑ'G92)

rss92ₑ = sum((G92 - X92ₑ*α92ₑ).^2)
σ92²ₑ = rss92ₑ / (length(G92) - 3)
var₍α92ₑ₎ = σ92²ₑ * inv(X92ₑ'X92ₑ) 

[α92ₑ var₍α92ₑ₎]

3×4 Matrix{Float64}:
   0.461253   0.000126359   9.12279e-5  -0.0092892
   1.02214    9.12279e-5    0.0296269   -0.157186
 -17.5878    -0.0092892    -0.157186    13.5323

Other datasets
We can also test the new approach on other datasets. We can use the same methodology to es-
timate the airborne fraction. The preferred data for the LULCC emissions are from the Global
Carbon Project [5]. However, we can also use data from R. A. Houghton and A. Castanho [6]
and M. J. van Marle, D. van Wees, R. A. Houghton, R. D. Field, J. Verbesselt, and G. R. van der
Werf [7].
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lulcc₂ = Vector{Float64}(data[!, 7]);
lulcc₃ = Vector{Float64}(data[!, 8]);

E₂ = fossilfuels .+ lulcc₂;
E₃ = fossilfuels .+ lulcc₃;

α₆ = (E₂'E₂) \ (E₂'G)
rss₆ = sum((G - α₆ * E₂).^2)
σ²₆ = rss₆ / (length(G) - 1)
sd₍α₆₎ = sqrt( σ²₆ / (E₂'E₂) )

α₇ = (E₃'E₃) \ (E₃'G)
rss₇ = sum((G - α₇ * E₃).^2)
σ²₇ = rss₇ / (length(G) - 1)
sd₍α₇₎ = sqrt( σ²₇ / (E₃'E₃) )

[α₆ sd₍α₆₎; α₇ sd₍α₇₎]

2×2 Matrix{Float64}:
 0.475539  0.0152315
 0.490211  0.0157142

Deming regression estimator
We can also estimate the airborne fraction using Deming regression [8]. Deming regression is
a method for estimating the parameters of a linear regression model when both the dependent
and independent variables are subject to measurement error. The Deming regression assumes
that the measurement errors in the dependent and independent variables are normally dis-
tributed with known variances.

The Deming regression estimator is given by:

𝛼𝐷𝑒𝑚𝑖𝑛𝑔 =
𝑀𝐺𝐺 − 𝛿𝑀𝐸𝐸 +√(𝑀𝐺𝐺 − 𝛿𝑀𝐸𝐸)

2 + 4𝛿𝑀2
𝐸𝐺

2𝑀𝐸𝐺
,

where

𝑀𝐺𝐺 =
1
𝑇
∑
𝑇

𝑡=1
𝐺2𝑡 ,

𝑀𝐸𝐸 =
1
𝑇
∑
𝑇

𝑡=1
𝐸2𝑡 ,

𝑀𝐸𝐺 =
1
𝑇
∑
𝑇

𝑡=1
𝐸𝑡𝐺𝑡,

and 𝛿 = 𝑉 𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝜔𝐺,𝑡)
𝑉 𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝜂𝐸,𝑡)

 is the ratio of the variance of the measurement error in the coverage
to the variance of the measurement error in emissions.

Several values for 𝛿 are tried, given that the true value is unknown.
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M₍ₑₑ₎ = E'E
M₍ₑₐ₎ = E'G
M₍ₐₐ₎ = G'G

δ = zeros(2, 5)
δ[ 1, :] = [0.2 0.5 1 2 5]

for ii = 1:5
    δ[ 2, ii] = ( M₍ₐₐ₎ - δ[1, ii] * M₍ₑₑ₎ + sqrt( (M₍ₐₐ₎ - δ[1, ii] * M₍ₑₑ₎)^2
+ 4 * δ[1, ii] * M₍ₑₐ₎^2 ) ) / (2 * M₍ₑₐ₎)
end

display(δ)

2×5 Matrix{Float64}:
 0.2       0.5       1.0     2.0       5.0
 0.462305  0.456067  0.4526  0.450406  0.448895

Other drawbacks of the Deming regression is that there is no closed form expression to obtain
the standard errors. It also cannot easily handle additional regressors like in the preferred
specification. We solve these issues in the paper: On measurements errors in CO2 airborne frac-
tion estimates by J. Eduardo Vera-Valdés and Charisios Grivas.

Summary of results

results_replication = DataFrame("Model" => String[], "Estimate" => Float64[],
"Std. Error" => Float64[], "Confidence Int." => Vector{Float64}[] )
nd = 4;

push!(results_replication, ["Regression", α₂, sd₍α₂₎, round.([α₂ - 1.96 *
sd₍α₂₎, α₂ + 1.96 * sd₍α₂₎], digits=nd) ] )
push!(results_replication, ["Regression with ENSO and VAI", αₑ[1],
sqrt(var₍αₑ₎[1,1]), round.([αₑ[1] - 1.96 * sqrt(var₍αₑ₎[1,1]), αₑ[1] + 1.96
* sqrt(var₍αₑ₎[1,1])], digits=nd) ] )
push!(results_replication, ["Regression from 1992", α92₂, sd₍α92₂₎, round.
([α92₂ - 1.96 * sd₍α92₂₎, α92₂ + 1.96 * sd₍α92₂₎], digits=nd) ] )
push!(results_replication, ["Regression from 1992 with ENSO and VAI", α92ₑ[1],
sqrt(var₍α92ₑ₎[1,1]), round.([α92ₑ[1] - 1.96 * sqrt(var₍α92ₑ₎[1,1]), α92ₑ[1]
+ 1.96 * sqrt(var₍α92ₑ₎[1,1])], digits=nd) ] )
push!(results_replication, ["Regression with LULCC (H&N)", α₆, sd₍α₆₎, round.
([α₆ - 1.96 * sd₍α₆₎, α₆ + 1.96 * sd₍α₆₎], digits=nd) ] )
push!(results_replication, ["Regression with LULCC (vMa)", α₇, sd₍α₇₎, round.
([α₇ - 1.96 * sd₍α₇₎, α₇ + 1.96 * sd₍α₇₎], digits=nd) ] )
push!(results_replication, ["Deming regression (δ=0.2)", δ[2, 1], NaN,
[NaN] ] )
push!(results_replication, ["Deming regression (δ=0.5)", δ[2, 2], NaN,
[NaN] ] )
push!(results_replication, ["Deming regression (δ=1)", δ[2, 3], NaN, [NaN] ] )
push!(results_replication, ["Deming regression (δ=2)", δ[2, 4], NaN, [NaN] ] )
push!(results_replication, ["Deming regression (δ=5)", δ[2, 5], NaN, [NaN] ] )
results_replication.Estimate = round.(results_replication.Estimate,
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digits=nd)
results_replication."Std. Error" = round.(results_replication."Std. Error",
digits=nd)
display(results_replication)

Note that M. Bennedsen, E. Hillebrand, and S. J. Koopman [1] considered heteroscedasticity
and autocorrelation robust standard errors. Nonetheless, their selected bandwidth is quite
small, so that they are almost identical to the OLS standard errors. We report here the latter
for simplicity.
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